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Introduction 

The physical properties of thin films are 
vital for many technological applications, 
ranging from optical mirrors to solar 
cells [1, 2], and they are also of interest 
for fundamental condensed matter 
physics. For example, our everyday life 
would be unthinkable without the 
achievements of microelectronics, a 
revolution that began with the discovery 
of transistors [3]. Ever since, the main 
strategy to make more powerful 
electronic devices is to shrink the size of 
semiconductor blocks in a microchip, 
with the newest types of MOSFET 
reaching sizes in the range between 7 nm 
and 22 nm. A different strategy to push 
the boundaries of computing power is 
provided by quantum computers. These 
are based on qubits, which are physically 
realized by ultra-thin superconducting 
elements in the thickness range from few 
tens of nanometers to about 
100 nm. Thin films of superconducting 
materials are also promising as an 

alternative route to microelectronics, thanks to the recently discovered supercurrent field effect, where 
electric fields (EFs) are used to suppress the supercurrent in ultra-thin films [4, 5]. Metallic and 
superconducting ultra-thin films are also of great technological importance for their thermal 
properties, in particular for their application as single-photon detectors and, again, as components for 
superconducting nanoelectronics. In all these applications, it is crucial to effectively control the heat 
removal and the heat dissipation at cryogenic temperatures, which ultimately means tackling phonon 
transport problems under nanoscale confinement. 
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At the very heart of the problem of understanding superconductivity, or electronic and heat transport, 
in nanometric thin films, lies the fundamental problem of effectively describing the propagation of 
wavefunctions in nano-confinement. The most difficult problem is posed by the presence of an interface 
which impedes or limits the propagation of the wavefunction across it. This is because of the irregularity 
of the interface, which is unavoidable in any experimentally realized film. Even for the most regular 
surface of a perfectly crystalline film with no defects, assuming that the wavefunction vanishes exactly 
at the same coordinate of the surface is a strong idealization, made unphysical by the atomic roughness 
of the surface. 
© 2025 The Author(s). Published by IOP Publishing Ltd 
A new approach, originated from the study of elasticity of thin liquid films [6], has recently been 
investigated, which can manage the description of wavefunctions under nano-confinement without 
having to assume a fixed hard-wall boundary condition ( BC ). 
Furthermore, this theory provides a simple way of obtaining analytical closed-form expressions for key 
physical quantities, such as the electronic density of states (DOSs), the phonon DOS, the Fermi energy, 
as a function of the film thickness. This allows the theory to be incorporated into microscopic 
frameworks and models of electronic and vibrational properties. Agreement with experimentally 
observed quantities has been achieved over the past few years for different quantities (electrical 
conductivity, superconducting critical temperature, specific heat) and for diverse materials, ranging 
from semiconductors to metals to insulators. Particularly striking has been the prediction of the 
superconducting critical temperature as a function of nanometric film thickness for two real materials, 
aluminum and lead, with no adjustable parameters, by implementing this quantum confinement 
strategy within the Eliashberg theory of superconductivity [7]. 
In this Perspective paper we attempt to provide a succinct pedagogical introduction to these latest 
developments. We will consistently focus on thin films that remain 3D even in the quasi-2D or ultra-
thin (sub-nanometer) limit. This treatment leaves the perfect 2D limit, i.e. the atomic monolayer, out 
of the current discussion. This choice is motivated by the fact that the basic physical laws change 
discontinuously upon going from a 3D multi-layer to a perfectly 2D monolayer, as reflect e.g. in 
different functional forms of the DOSs for both phonons and electrons and in many other properties 
and phenomena, the mechanism of which radically changes upon taking the perfect monolayer limit. 
For a discussion of these issues, cf [8]. 
1. Quantum confinement of wavefunctions in real materials 

We schematize the thin film as a 3D material with confinement along the vertical z direction, and 
consider it unconfined along the two other Cartesian directions, i.e. in the xy plane, as schematically 
depicted in figure 1 for the generic case of non-interacting quasiparticles (e.g. phonons or electrons). 
For electrons, the red sphere is the Fermi sphere, while for phonons it is the Debye sphere. 
As derived in [8–11], along the direction θ (cfr figure 1(a)), plane-wave quasiparticles with wavelength 
L 
λ > λmax = (1) 

 
cosθ 
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cannot propagate in the thin film. Here, the polar angle θ of the propagation direction is measured with 
respect to the vertical z axis (cfr figure 1(a)). 
As stated in all quantum mechanics textbooks, the momenta kx, ky, kz of a quantum particle in a ( small 
) box are, in general, discretized whenever standard vanishing (or hard-wall) BCs are chosen for the 
governing Schrödinger equation. In particular, by imposing that the quasiparticle wavefunction ψ 
vanishes exactly at the borders of the, e.g. rectangular, box, one obtains plane-wave forms of the type 
ψ ∼ sin(kxx)sin(kyy)sin(kzz). The hard-wall BCs lead to a discrete set of values, kz = πn/L, with n an 
integer number. Accordingly, one expects the minimum wavevector in the system to be given by: 
kz,min = π/L. (2) 
However, the assumption that the minimum value of kz is equal to π/L is valid only when the standard 
hard-wall BCs are strictly enforced at the boundaries of the rectangular box. 
This is not what one observes in a ‘real’ nanoconfined system, where the minimum value of kz can be 
much smaller than π/L. To exemplify this point with data, we report below, in figure 2, recently 
published results from atomistic MD simulations for amorphous ice thin films (figure 2(a) shows a 
rendering of the simulated system). The data show clearly that kz can be much smaller than π/L: indeed, 
it can be even π/2L, i.e. a factor of 2 smaller. 
The ultimate reason for this observation, lies in the unavoidable atomic-scale roughness and 
irregularities of the interface of the thin film, an effect which becomes ever more important for ultra-
thin films just a few nanometers thick or thinner. 
Even for a perfectly crystalline thin film with no defects in the inner atomic layers, the interface 
presents atomic roughness or, even, significant structural disorder as demonstrated in [12]. This is 
illustrated on the example of the interface of crystalline copper, in figure 3( a ). 
With reference to figure 3(b), in a real-life thin film with atomic roughness of the interface, the position 
at which the wavefunction vanishes along the confinement z axis, will be a function of the in-plane 
coordinates, x and y. This is a genuine disorder effect, whereby kz is no longer a good quantum number, 
since values of kz will be nπ/L(x,y) where L is not fixed once and for all, but varies randomly with x and 
y. Indeed, it is well known from quantum mechanics, that momentum is a good quantum number for 
hard-wall or periodic BCs 
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only, but not for open BCs. As a result, in a real-life thin film there is no discretization of kz anymore, 
unlike in an idealized, perfect and smooth rectangular box. It should also be noted that, for a 
significantly irregular surface, the two white spheres of hole pockets would also have a corresponding 
‘roughness’. However, by taking the average over the roughness, one would retrieve the two perfect 
white spheres of figure 3(b). Hence, the theory evaluated using the two perfect white spheres is correct 
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in an average sense, modulo possible local small fluctuations of the hole pockets envelope around the 
mean given by the two perfect spheres. 
Another consequence of this important fact is the following: if the sample is extended in the xy plane, 
as it is for thin films, k can still be treated as a quasi-continuous variable [9, 13], because |k| = k = 2π/λ 
obeys the following relation [14, 15]: 
1  

. (3) 

 
k 
 
The confinement-induced cutoff on λ, equation (1), remains valid, in good approximation, also when 

the irregularities of the interface are such that kz is not discretized. The cutoff condition means that a 
number of quasiparticle states in k-space are suppressed due to the confinement along the z direction 
of the film. 

We shall see what the implications of this cutoff are for the distribution of momentum states of 
electrons and phonons in the following sections. 
2. Phonons 

Let us reformulate the condition for the cutoff, equation (1), in terms of the wavevector: 
kmin = 2π cosθ/L. (4) 
This is a parametric equation for two identical, mirror-image spheres, across the kx −ky plane in a 3 D 
k-space [10], and is schematically depicted in figures 1(b) and (c). These two (white) spheres, which are 
contained within the Debye sphere (red), correspond the unoccupied states that cannot be populated 
due to the confinement. As the confinement is further enhanced (or L is decreased), these two white 
spheres of unoccupied states eventually make contact with the Debye sphere’s surface. With additional 
confinement, the surface corresponding to the highest momentum becomes non-spherical, as shown 
in figure 1( c ). 

3. Figure disorder in the  ( a ) Rendering of a perfectly crystalline copper thin film prepared at 500 K, with evidence of strong 
uppermost atomic layer ( interface ) [ 12 to different local  ]. Different colors of atoms in the interface layer correspond 

coordination numbers as  crystallographic structures and coordination numbers ( different colors correspond to different 
legend). thin film explained by the Piane. Image courtesy of Massimo Delle of  ( b ) Schematic of an irregular interface of a 

thickness L along the confinement dimension ( vertical z axis, consistent with figure 1 (a)). The irregularity of the interface is  
greatly exaggerated for illustrative purposes.  
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3.1. Vibrational DOSs (VDOSs) of thin films 
The occupied volume in k-space can be evaluated exactly using basic solid geometry, as shown in [8, 
9], and reads as: 
Lk4 
Volk . (5) 

The number of states in k-space with k < k′ then readily follows as:  

V Lk4 
N(k < k′) = 3 , (6) 

 
(2π)   2 
where V is the total volume of the sample. The phonon DOSs in the thin film then follows immediately, 
upon defining the speed of sound v such that ω = vk, as: 
d   V ω3 
g(ω) = dωN(ω < ω′) = 4π 3 L v4 (7) 

 
 

which exhibits a cubic frequency dependence ∼ ω3 that was verified both experimentally (inelastic 
neutron scattering) and by molecular dynamics simulations in [11]. Importantly, the ω3 law holds for 
both crystalline thin films as well as for completely amorphous thin films. The above VDOSs is for just 
one phonon polarization, and a factor of three has to be implemented when computing the total internal 
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energy U [14]. This law is to be contrasted with the standard Debye law for the phonon DOSs, 
exhibiting, instead, a quadratic frequency-dependence: 
V ω2 
g(ω) = 2π 2 v3 . (8) 

 
We also note the linear dependence on the film thickness, L. The above ω3 law for the phonon DOSs of 
thin films has been experimentally verified by inelastic neutron scattering for ultra-thin films of ice of 
thickness L≈1 nm, as shown in figure 4. 
3.2. Specific heat of thin films 
Since the internal energy of the system can be written as an integral over the VDOS, upon taking the 
first derivative of the internal energy with respect to the temperature T, one readily obtains the 
following formula for the heat capacity of thin films: 

Cv . (9) 

This formula exhibits a new ∼T4 dependence of the heat capacity on temperature, and a new 
dependence ∼L on the film thickness. The ∼T4 dependence of the specific heat of thin films is radically 

4. Figure measured by inelastic  ( a ) Debye-normalized VDOS of ice thin films ( sandwiched between graphene oxide layers) as 
neutron scattering. Different curves refer to varying thickness L in the range 0.7–2 nm, with L bottom (  the  decreasing from top to 

expected for bulk  bottom curve is the dry graphene oxide background signal). The top curve exhibits the quadratic Debye law 
blue solids, whereas the curve exhibits the ω 3 states (  for law derived not  nanometric thin films. ( b ) Phonon density of 

ice, of thickness normalized) for a thin film of crystalline L in the range 0.7–2 nm, with L decreasing from bottom to top. Adapted  
from [ 11 ]. CC BY 4. 0 .  

https://creativecommons.org/licenses/by/4.0/
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different from the textbook Debye law ∼T3, and is a genuine quantum confinement effect resulting from 
the cutoff argument equation (1). 
A preliminary comparison of the heat capacity predicted by equation (9) with experimental data on 
NbTiN thin films can be seen in figure 5. 
These results pave the way for a new understanding of other thermal properties of thin films, including 
the thermal conductivity. Indeed, the thermal conductivity can be expressed in terms of an integral 
over the specific heat [18], or equivalently, over the VDOS [19, 20]. In particular, the mechanistic 
understanding of quantum confinement effects on the phonon statistics, i.e. on the VDOS and on the 
specific heat, outlined above may represent a solid basis to arrive at a similar mechanistic 
understanding of the ubiquitously observed increase of thermal conductivity with film thickness [20–
22]. This also includes the important case of graphene [23–25], which, in its monolayer state, exhibits 
an extremely high thermal conductivity [26]. 
3. Electrons 

We now consider a metallic thin film, and work in the free-electron approximation. Also in this case, 
due to the unavoidable roughness of the film surface, the electron wavefunction will not vanish exactly 
on the surface of an idealized perfectly rectangular box. Hence, due to this and due to the lack of 
confinement in the xy plane, also in this case, kz is no longer a good quantum number and we do not 
expect it to be quantized. 
4.1. Fermi surface topology of thin films 

Figure 5. ( a ) Comparison between the T 4 temperature dependence of the phonon heat capacity predicted by equation ( 9 ) (  blue  
thin films ( line) and experimental data ( circles ) on NbTiN L = 6 nm), Adapted figure with permission from [ 16 ] , Copyright  

the Physical American (2024) by Society. There is only one parameter in the comparison, which is the speed of sound v ∼ 4000  
ms − 1 value The Debye , here taken as a characteristic value of speed of sound in metals and a plausible for this material. T 3 

the boson peak  scaling ( orange line) is also shown for reference, along with a dashed demarcation line for the onset of 
phenomenon in this class of materials [ 17 the linear predicted ]. ( b ) Comparison between scaling of specific heat with thickness L  

films.  and experimental data for NbTiN thin 
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The Fermi sphere of a thin film is schematically depicted in figures 1(b) and (c). There are two hole-
pocket spheres (symmetric with respect to the origin, along the kz axis), which represent the 
unpopulated states in k-space due to confinement. This is because equation (1) applies also in this case. 
For a thin film of thickness L, this reduction of the available volume for free carriers in momentum (k) 
space is evaluated exactly as (cfr figure 1(b)): 

Volk . (10) 

Upon reducing the film thickness further below a threshold Lc = (2π/n)1/3, where n is the free carrier 
concentration, one encounters a topological-type transition first described in depth in [9]. At this 
transition, the Fermi surface undergoes a distortion from the trivial homotopy group π1(S2) = 0 of the 
spherical surface to a surface belonging to a different homotopy group Z, with the new topology 
depicted in figure 1(c). In this 
situation, the available volume in k space becomes (again see [9] for a full derivation): 
4πk3 Lk4 
Volk = −Vinter , (11) 3 

 
where Vinter denotes the intersection of the two white spheres of hole pockets (states suppressed by 
confinement) with the original Fermi sphere (figure 2). It could be interesting, in future work, to 
investigate whether the above topology of the Fermi sea does include two different Fermi surfaces, for 
holes and electrons, in which case the Bianconi–Perali–Valletta theory [27, 28] would predict a Fano–
Feshbach resonance between two superconducting gaps that could be experimentally checked upon. 
4.2. Electron DOSs at varying film thickness 
From this, the electronic DOSs g(ϵ) of free carriers can be easily evaluated [9]: 

g   (12) 

. 
with a crossover from the linear-in-energy regime at low energies to the standard Fermi-gas square-
root at higher energies. 
The crossover is located at an energy ϵ∗ = 2mLπ2¯h22 , which depends on the film thickness L. 
4.3. Fermi energy as a function of film thickness 
We are now able to derive the Fermi energy ϵF for this system. Since the total number of electrons N in 
the sample is conserved, we have (always at T =0): 

F 

N =gsg(ϵ)dϵ, (13) 
with the spin-degeneracy factor gs = 2. Upon plugging-in the electron DOSs of the thin film given by 
equation (12), and evaluating the integral in a piecewise fashion, we obtain 

N 2 3 − 3 , (14) 

 

ϵF = ϵbulkF , (15) 

where n = N/V is the free-carrier density in the sample. One can notice the explicit dependence of the 
Fermi energy on the film thickness L. The above dependence of Fermi energy on the film thickness 
recovers expressions that were already proposed in the literature based on the assumption of perfectly 
smooth rectangular boxes with vanishing hard-wall BCs [29, 30]. 

3   (2π) h ¯ 
and, therefore, 

3 L 
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Under conditions of strong confinement, it may as well happen that ϵF < ϵ∗. The value of film thickness 
Lc where this happens depends solely on the free-carrier density n and is given by: 

Lc . (16) 

In this regime, we have only one integral since the linear DOS extends up to ϵF. A simple evaluation 
gives: 

h¯2   

ϵF =.   (17) m 

 
Upon collecting results for the two regimes, as usual, we can write the Fermi energy as a function of the 
film thickness across the entire regime of free-carrier density as a piecewise function: 

  (18) 

4.4. Resistivity of ultra-thin semiconductor films 
The resistivity of thin films has been a topic of intense research since the advent of modern quantum 
mechanics and statistical physics, due to its immense technological significance. Most of the attention 
has been traditionally focused on the role of the surface, and, in particular, on the enhanced scattering 
of free carriers by the interface (in addition to standard scattering by defects and phonons as in the 
bulk material). In simple terms, thinner films have comparatively more specific interface, such that 
surface-scattering events will become increasingly more important contributions to the resistivity. As 
a result, the resistivity increases upon decreasing the film thickness, which is, indeed, what one 
observes experimentally. This mechanism lies at the heart of the most widely used theoretical 
framework for the resistivity and conductivity of thin films, known as the Fuchs–Sondheimer (FS) 
theory. Originally developed by Fuchs in 1938 [31] and later refined by Sondheimer [32], the theory is 
based on an approximate solution to the Boltzmann kinetic equation for the population balance of free 
carriers, by taking the above mentioned surface-scattering processes into account. As reported by 
Sondheimer [32], simple closed-form expressions for the resistivity contribution of surface scattering 
are obtained for thick films and thin films, respectively, as ρs/ρ0 = [1+3/(8κ)]−1 and ρs/ρ0 = 
{4/[3κln(1/κ)]}−1, with κ = L/ℓ where ℓ is the mean free path in the bulk material [32]. E.g. for silicon, ℓ 
≈ 20 nm, hence the crossover between the two formulae occurs around 10 nm. 
The most recent ab-initio calculations have been compared with the predictions of the FS theory in 
[33]. For the case of Cu thin films over a very broad thickness range (spanning from hundreds of nm to 
about 5 nm), the agreement is not always optimal, in particular for ultra-thin films below 10 nm of 
thickness [33]. While phenomenological approaches based on the full-band model provide a much 
better fitting of the ab-initio data, still the quantum confinement effects have not been taken into 
account. 
In the following, based on reference [34], we propose a combined FS-quantum confinement model 
which is able to describe the thickness-dependent resistivity of ultra-thin silicon films in a regime where 
the available experimental data cannot be described by the FS theory alone or by other approaches. 
4.5. Resistivity of c-Si ultra-thin film 
The Fermi level µ is defined as the Fermi energy ϵF at zero temperature. By thus setting ϵF ≡ µ, for 
consistency with the semiconductor physics literature, this quantity is given by: 
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  (19) 

where µ∞ is the Fermi level of the bulk material. 
We consider c-Si semiconductor thin films, which are either intrinsic or weakly-doped such as e.g. the 
ex situ-doped thin films studied recently in [35]. Since, in these materials, there are well-known issues 
of dopant deactivation, we are going to use the equations for the free-carriers concentration as for 
intrinsic semiconductors. 
For these systems, the concentration of free carriers varies in a broad range, from a lower bound that 
coincides with the intrinsic material, n ∼ 1016 m−3, to an upper bound of n ∼ 1025 m−3, as noted in [35]. 
Here we focus our theoretical analysis on a regime of very weak n-doping where n ∼ 1016 −1020m−3. 
In these conditions, Lc is of the order of hundreds of nanometers, and we can thus safely operate in the 
regime L < Lc, using the second of the two relations reported in equation (19). In this regime, the 
concentration of free carriers is given as [14]: 

 
ni = √nc (T)nv (T)exp(−Eg/2kBT) (20) 
where nc  and nv . Here, m∗e and m∗h are the effective masses of electrons and 

holes, respectively, and Eg is the gap energy. The latter is related to the Fermi level via: 
. (21) 

Since the holes are lighter than the electrons, iwe can write: 
Eg = 2µ−const·kBT (22) 
where const > 0. This relation reflects the fact that the Fermi level falls exactly in the middle of the 
energy gap at T =0, while it is shifted upwards towards the bottom of the conduction band at room 
temperature. Because, in the thin film, the Fermi level µ is a function of the thickness L via equation 
(19), the above relation implies that the energy gap Eg is a function of L. In particular, because the Fermi 
level increases upon decreasing L, the gap energy Eg must increase upon decreasing L (this may no 
longer be true for monolayer semiconductors where the band structure topology can change 
significantly, which may lead to a smaller energy gap as demonstrated for PbS monolayers in [36]). 
Working in the weakly n-doped regime, the conductivity σ is given by: 
σ = (ni +nd)eµe (23) 
where nd represents the concentration of free carriers due to n-doping, e.g. 
nd ≈ [nc(T)Nd]1/2 exp(−Ed/2kBT), where Nd is the concentration of donors and Ed is the ionization energy 
of the donor impurity atom. In a first approximation which should remain valid for multi-layer thin 
films, the ionization energy Ed should not differ substantially from its value in the bulk. Hence, one can 
assume the form of nd to be independent of the film thickness L, and that the donor atoms’ contribution 
to the L-dependence of the conductivity is negligible. However, this assumption should be treated more 
carefully upon approaching the L → 0 limit or the perfect monolayer. That is because, in that case, the 
electron wavefunction becomes significantly squeezed in the z direction compared to the other 
directions, and also the total electrostatic potential experienced by the ionizing electron could be 
significantly different from that in the bulk (this is a phenomenon somewhat analogous to the pressure 
ionization lowering known in plasma physics [37]). Here we shall neglect these effects and leave them 
for careful consideration in future more microscopically detailed studies. 



Applied Physics, Material Sciences, and Engineering Journal 
Vol. 13 No. 1 | Imp. Factor: 8.13  

 

 

Copyright: © 2025 Continental Publication 

 

  
62   

Furthermore, the mobility µe = eτe/me is given in terms of the mean free time between collisions of 
electrons with phonons and defects, τe. Finally, the dependence of the conductivity on the thickness L 
due to the quantum wave confinement of the electrons is given, in the regime L < Lc, by: 

σ = (ni +nd)eµe ∼ exp(−const/L1/2). (24) 
The corresponding resistivity contribution due to confinement, ρc is then 
ρc (L) = 1/σ ∼ exp(const/L1/2). (25) 
We now combine this effect of quantum confinement on the conductivity, with the surface-scattering 
as predicted by the FS theory. Assuming that Matthiessen’s rule is valid, the different effects of 
quantum confinement and of surface scattering can be summed up as independent contributions [14] 
to give the total resistivity ρ(L) as: 
ρ(L) = ρc (L)+ρs (L) (26) 
where ρs(L) is given by the FS theory [32]. 
Using the form for the confinement-induced resistivity as a function of L given in equation (25) for 
ρc(L) and the asymptotic FS expressions mentioned above for ρs(L), one thus obtains the fitting of the 
experimental data of [35] reported in figure 6. 
As is clear from figure 6, down to L≈10 nm, the dominant contribution to the resistivity is given by the 
FS mechanism from surface scattering (green dashed line). As long as the FS is the dominant 
contribution, the confinement-induced contribution to resistivity is orders of magnitude smaller. At 
about L≈10 nm there is a dramatic crossover, with the confinement-induced contribution (orange 
dashed line in figure 6) taking over with respect to the FS contribution. This now becomes the dominant 
effect as the thickness is reduced below 10 nm. It is this quantum confinement contribution which is 
allows the model to capture the sharp increase of resistivity in the range from 10 nm to 4.5 nm. Without 
this contribution, there is no way that the FS theory could describe the experimental data points. This 
comparison further corroborates the need of including quantum confinement effects, developed by 
accounting for the presence of surface roughness even in crystalline thin films, when describing the 
electronic properties of ultra-thin films. Of course, the caveat always remains that there could be also 
other, more mundane, contributions to the exponential divergence of resistivity upon shrinking the 
thickness to the 2D limit. These include absence of percolation or spatial non-uniformity of activated 
dopants, which are however impossible to distinguish with the current experimental capabilities as one 
would need extraordinarily detailed data. 
4. Superconductivity of thin films 

We can now explore the predictions of the theory for ultra-thin metallic superconductors. We shall 
assume throughout that the conventional electron–phonon pairing mechanism of electrons is valid. 
Hence, we will 
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first discuss the theory at the level of the Bardeen–Cooper–Schrieffer (BCS) theory [38], for which 
analytical closed-form expressions of the superconducting critical temperature Tc have been obtained 
[9]. 
Subsequently, we shall implement the quantum confinement model into the more general Eliashberg 
theory of electron–phonon superconductivity, which allows one to describe also higher levels of 
electron–phonon coupling. Using the Eliashberg theory, it has been recently possible to obtain a 
quantitative theoretical description of experimental data of Tc as a function of film thickness for 
aluminum and for lead thin films 
[7]. 
5.1. BCS theory for ultra-thin films 
Let us start with defining U⃗kk⃗′ as the phonon-mediated attractive interaction responsible for the 
Cooper pairing. In the weak-coupling BCS theory [38], this is simply some negative constant within a 
Debye-shell beneath the Fermi energy, and zero otherwise: 
{−U, if |ϵ−ϵF| < ϵD 
U⃗kk⃗′ = 0, otherwise . (27) 
Here ϵD ≡ h¯ωD is the Debye energy of the solid, with ωD the Debye frequency. As usual within BCS 
theory in its simplest version, the phonons that glue together the Cooper pairs are optical phonons with 
frequency near ωD. This fact justifies neglecting the effect of confinement on these phonons (this is 
because the effects of confinement are mostly affecting acoustic phonons at much lower energy). Using 
the Bogoliubov method, we obtain [39] 

∆⃗k = . (28) 

l 
This leads to [39]: 
1   

, (29) g(ϵF) 

 

Figure 6. line) obtained by combining  Comparison between the theoretical predictions of the proposed model ( solid continuous 
the FS surface scattering theory with the electronic confinement model ( equation ( 25 ( )) via Matthiessen’s rule, equation 26 ). The  

corresponding equations) without the  green dashed line represents the FS surface scattering prediction ( see text for the 
the confinement correction without electron-confinement correction, whereas the orange dashed line represents the electron FS  

by given contribution, equation ( 25 ). The symbols ( circles ) are the experimental data from [ 35 ].  
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where βc indicates the critical value for the Boltzmann factor β = 1/kBT, that is, the value at which the 
transition from normal metal to superconductor occurs. Inverting the relation gives [39]: 

kBTc  . (30) 

Clearly, the critical temperature Tc depends strongly (in an exponential fashion) on the electron DOS 
at the 
Fermi level. Upon substituting equation (12) for the electron DOS g(ϵ) of the thin films and we can 
evaluate this form of the DOS at the thickness-dependent Fermi energy ϵF given by equation (18). We 
thus obtain: 

 
for L < Lc. Therefore, this expression predicts a maximum in the Tc as a function of thickness L, which 
occurs exactly at L = Lc. This is the thickness value at which the topological-type transition of the Fermi 
surface occurs, from the Fermi sphere π1(S2) = 0 to the distorted Fermi surface with homotopy group 
Z, cf figures 1(b) and ( c ). 
The physical origin of this dome of Tc with thickness L lies in the topological distribution of free-electron 
states in the Fermi sea. For L > Lc, cf figure 1(b), as the thickness is reduced, the hole-pocket spheres 
grow with the consequence that more electron states are pushed to the Fermi surface, which thus 

increases the electron DOS at the Fermi level, i.e. g(ϵF). In turn, the increase of g(ϵF) within the BCS 
equation leads to an exponential increase of Tc as L gets reduced. Conversely, if the thickness is lower 
than Lc, we are now in the situation depicted in figure 1(c). Due to the changed topology of the Fermi 
surface, as the thickness gets further reduced, in this case, the electron states get more and more spread 
out over a larger Fermi surface. The consequence of this is that, now, g(ϵF) decreases with further 
decreasing L. In turn, this leads to a decreasing trend of Tc as the thickness L is further decreased. 
5.2. Superconductivity dome as a function of film thickness 
The peculiar trend of Tc as a function of film thickness L, with a maximum, has been observed various 
experimental systems, e.g. in [40] for epitaxial aluminum and also recently in [41] (previous theories 
also predicted a regime of enhancement of Tc due to confinement [42]). In all these cases, i.e. both in 
the experimental data-sets as well as in the predictions of the current theory, there is no visible sign of 
regular oscillations in the trend of Tc vs L, contrary to older theoretical claims [43–46]. The reason for 
this has to be found, again, in the absence of regular discretization for kz as explained in section II 
above. 
By using values of the bulk properties, e.g. gbulk(ϵF) and U, close to those reported in the literature, a 
good agreement between equation (31) and experimental data of Pb ultra-thin films from [47] has been 
demonstrated in [9], supporting the non-monotonic behaviour with the dome in Tc. However, Pb is a 
strong-coupling material with a rather high Tc value and large electron–phonon coupling, which should 
be more rigorously described by the more general Eliashberg theory. This is discussed in what follows. 
5.3. Eliashberg theory of superconducting thin films 
For the governing equations of the Eliashberg theory of superconductivity in the Migdal approximation 
we shall refer the reader to the excellent reviews [48, 49]. The standard one-band s-wave Eliashberg 
equations, when the Migdal theorem holds, can be solved numerically by taking, as the only input, the 

T c = 

 
     

     

4 ϵ D 
3 . 52 k B exp  

( 

− 1 
Ug bulk ( ϵ F ) ( 1 + 2 

3 
π 

nL  3 )  
1 / 3 

) 

if L > L c  

4 ϵ D 
3 . 52 K B exp  

( 

− 1 
Ug bulk ( ϵ F ) 

( 3 π 2 n ) 
1 / 3  

√ 
2 π Ln  

) 

if L < L  c .  

(31)  

According to this expression, the T c is a decreasing function of L for L > L c and an increasing function of L  
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electron–phonon spectral density α2F(Ω) also known as Eliashberg function (where Ω denotes the 
phonon frequency). In simple words, this is the phonon frequency-dependent sum over the 
contributions from scattering processes involving electrons and phonons on the Fermi surface. The 
Eliashberg function can be either measured experimentally e.g. by tunnelling measurements [50], or 
computed via ab-initio methods [48, 51]. The other key input to the Eliashberg equations is the electron 
DOS, which the crucial thickness-dependent quantity, and is given by the quantum confinement theory 
of [9], equation (12) reported above. If one removes the approximations of the infinite bandwidth and 
of taking the electron DOS equal to a constant (i.e. its value at the Fermi level), the Eliashberg equations 
are slightly more complex and they become four equations [52]. However, when the electron DOS is 
symmetrical with respect to the Fermi level, the situation is particularly simple because the non-zero 
self-energy terms are just two, which facilitates the computation. 
This is the scheme used to obtain a quantitative theoretical prediction of the critical temperature Tc as 
a function of thickness in excellent agreement with experimental data for Al and Pb thin films in [7], 
shown in here in figure 7. 
5.4. Non-superconducting elements may become superconductors near the 2D limit 
We learn in high-school that noble metals, such as gold and silver, are excellent conductors of heat and 
electric current. However, they are not superconductors, or at least their critical superconducting 
temperature Tc is too low to be measured with standard equipment. We have seen, however, that 
quantum confinement, in the regime L > Lc can strongly enhance the superconducting Tc of a given 
material, due to 



Applied Physics, Material Sciences, and Engineering Journal 
Vol. 13 No. 1 | Imp. Factor: 8.13  

 

 

Copyright: © 2025 Continental Publication 

 

  
66   

 
the growing hole-pockets which push more states to move to the Fermi surface. We have also seen that 
for good conductors, i.e. for materials with a large concentration of free carriers, n, the maximum at Lc 

is pushed to extremely low values of thickness, basically to the 2D limit. This implies that one can take 
advantage of the confinement-induced enhancement of Tc basically down to the 2D limit, for good 
conductors. This physical consideration is behind the idea of exploring the behaviour of Tc for ultra-
thin noble metal films, near the 2D limit. This was done, again by means of Eliashberg theory 
implementing the quantum confinement model described above and the most accurate ab-initio 
calculations of the Eliashberg function for noble metals. The results, published in [54], are somewhat 
surprising, as the reveal the possibility that ultra-thin films of gold, about 0.5 nm, may be 
superconductors with the same critical temperature of aluminum ( the latter is the most used material 
for qubits). The results are shown in figure 8. 
Finally, even magnesium (Mg), an alkaline-earth metal that is lighter than aluminum, is well known to 
be a good conductor but not to be a superconductor. Even in this case, however, quantum confinement 
leads to such increase in the DOS at the Fermi level, that Mg becomes an excellent superconductor 
when cast into ultra-thin sub-nanometer sheets. The same type of calculation [55], using Eliashberg 
theory and the Eliashberg function computed from ab-initio simulations, predicts that Mg can achieve 
a superconducting critical temperature as high as 10 K when the thickness is about 0.4 nm, as shown 
in figure 9. Also in this case, there are no adjustable parameters in the prediction. If confirmed 

Figure 7. critical  ( a ) Comparison between Eliashberg theory predictions, accounting for quantum confinement, of the 
temperature T c b ) Comparison  as a function of film thickness ( solid line) and experimental data for Pb thin films ( circles ). ( 

the critical temperature between Eliashberg theory predictions, accounting for quantum confinement, of T c as a function of film  
thickness respectively,  thin ( solid line) and experimental data for Al films ( circles ). The experimental data for Pb and Al are taken, 
from [ 47 [ ] and 53 ]. Adapted from [ 7 ]. © The Author(s). Published by IOP Publishing Ltd. CC 0 4. BY . The insets show the  
Eliashberg spectral function α 2 F (Ω) materials.  for the two 

https://creativecommons.org/licenses/by/4.0/
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experimentally, this would be a particularly attractive discovery for many technological applications 
(e.g. quantum computing, quantum electronics), because Mg would be a superconductor at 
temperatures well above the liquid helium boiling temperature. 
Objectively, an experimental verification of this prediction is difficult, because the effect may easily be 
obscured, e.g. by proximity effects. Also, ultra-thin films of gold may be extremely brittle and 
mechanically unstable. However, good candidate systems to detect this effect have been recently 
developed experimentally, which include: macroscopically large, nearly freestanding 2D gold 
monolayers, consisting of nanostructured patches formed on on an Ir(111) substrate and embedding 
boron (B) atoms at the Au/Ir interface [57]. Another candidate experimental system could be the ultra-
thin nanowires obtained via nano-molding [58] , which, in future technical improvements, may reach 
the atomic-scale thickness. 

 
5.5. Tuning the thin film superconductivity with electric fields 
Recent experimental work has revealed that superconductivity in thin metallic films can be suppressed 
by applying a strong enough external DC EF, denoted as Ecr [4, 5, 59]. Experimental evidence has shown 

Figure 8. for quantum confinement, of the Eliashberg critical temperature theory predictions, accounting T c function of film  as a 
thickness L for gold thin films. The inset shows the Eliashberg spectral function α 2 F (Ω) as computed via ab-initio methods [ 51 ].  
Adapted figure with from [ permission 54 ] , Copyright (2024) by the American Physical Society.  

Figure 9. Eliashberg theory predictions, accounting for quantum confinement, of the critical temperature T c film  as a function of 
thickness L shows the Eliashberg spectral function for magnesium ( Mg ) thin films. The inset α 2 F (Ω) as computed via ab-initio  
methods [ 56 ]. Reproduced from [ 55 ]. CC BY 4. 0 .  

https://creativecommons.org/licenses/by/4.0/
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that external EFs on the order of ∼108 Vm−1 are required to suppress the supercurrent in metallic thin 
films with a thickness of around 20 nm [59]. These findings are of great technological importance, 
because supercurrent field-effect transistors have huge potential for future classical [60, 61] and 
quantum computation [62] nanodevices. 
In spite of this intense experimental activity, the microscopic mechanism by which an external EF is 
able to penetrate a superconductor on a length-scale much larger than the Thomas–Fermi length of the 
normal state, has remained unclear. Numerical and experimental evidence has shown that the 
penetration length of an external static EF into Niobium-based thin films can be as large as 4 nm, hence 
closer to the London depth than to the Thomas–Fermi length [63, 64]. Some electrodynamic covariant 
theories [65, 66], building on an original intuition of F. London, seem to justify that an external EF 
penetrates into the SC phase on a length scale comparable to the London length. 
Whatever the exact penetration depth of the EF into the superconductor, standard electrodynamics 
shows that the EF amplitude decays exponentially from the interface into the thin film, with a 
characteristic decay length. If the decay length is a few nanometers, the EF will be non-zero also beyond 
the the decay length, because an exponentially-decaying function is identically zero only at infinite 
distance. This, in turn, will lead to a finite probability of Cooper pair breakage via tunnelling enabled 
by the EF. A microscopic theory of this effect, within a simplified version of the Eliashberg theory, has 
been derived recently in [67]. The theory predicts the critical value of EF needed to suppress 
superconductivity in metallic thin films, as a function of the film thickness L. 
The problem of splitting a Cooper pair by an EF is analogous to the textbook problem of EF-induced 
dissociation of an s-wave bound state. This is because, within BCS theory, a Cooper pair is described by 
a s-wave bound state satisfying the Schrödinger equation for two electrons interacting via an effective 
attractive force [38, 68], with a real-space description originally suggested by Weisskopf [69]. The 
solution for the bound-state dissociation under an EF is well known [70], and has been used to describe 
the Cooper pair splitting by an external EF in [67]. The formula for the critical EF magnitude needed 
to split the Cooper pair is given by [67]: 
2∆ 
Ecr = , (32) 

 
eξ 
where ∆ is the BCS energy gap, e is the electron charge, and ξ is the coherence length, which is obtained 
by the solution of Eliashberg equations [48]. 
Following reference [71], the above formula for Ecr can be derived by considering the Schrödinger 
equation for an electron initially bound in a s-wave bound state (the Cooper pair) of energy depth ∆, 

and subjected to an external EF of magnitude E = |−∇V|: 

  (33) 

where E is the energy, E is the EF magnitude, z is the spatial coordinate along which the EF is pointing, 
and ψ is the wavefunction. In the above equation, atomic units have been used. Furthermore, the 

attractive potential is schematically given by a spherical well: u(r) = −∆ for 0 ⩽ r ⩽ ξ and zero otherwise, 
where ∆ is the BCS energy gap and ξ is the coherence length [69]. The solutions to equation (33) are 
obtained by separation of variables in parabolic coordinates, and can be found in textbooks such as in 
[70]. From the solution to equation (33), one obtains the characteristic critical field Ecr to break the 
Cooper pair as follows. 
While the s-wave bound state (the Cooper pair) is spherically symmetric, the EF is directed along a 
certain spatial direction, which could be any direction in the solid angle. Hence, as shown with full 
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details in the textbooks, pp 296–7 of [70], one solves the Schrödinger equation equation (33) in 
parabolic coordinates, and uses the solution to compute the probability current of the electron escaping 
away from the bound state in the direction of the EF (i.e. the coordinate z in equation (33)). The result 
for the probability w of the electron tunnelling away from the bound state, in atomic units, is [70]: 

w   (34) 

where E is the magnitude (absolute value) of the EF. For a s-wave bound state of unitary depth energy 
and unitary radius, converting from atomic to physical units, the above formula from [70] reads as: 

w   (35) 

where 
R 
Ea = 2   H , (36) 

 
ea0 
with RH the Rydberg energy and a0 the Bohr radius (both are equal to unity in the atomic units used in 
Landau’s derivation [70]). Hence the critical EF to dissociate the bound state is: 
2R H 
Ecr = . (37) 

 
ea0 
For a generic s-wave bound state of depth energy ∆ and radius ξ, the critical EF needed to dissociate 
the bound state is thus [67] 

Ecr   

which is just the above formula equation (32). 
In the above equation for the critical EF, a possibly material-dependent parameter is the coherence 
length ξ. The latter is given by [72]: 

, (38) 

where ξ0 is the intrinsic (Pippard) coherence length, and ℓ is the mean free path. Thin films, such as 
those used in the supercurrent field effect devices, have a microstructure characterized by 
microcrystallites, the size of which sets the value of ℓ. Since, typically, ℓ ≪ ξ0 (because ξ0 can be tens or 
hundreds of nanometers), the coherence length ξ is controlled by ℓ, and, hence, by the disorder, and ξ 
≈ ℓ. Because for experimental metallic thin film systems the disorder is always present [73], in the form 
of small grains (crystallites) that are randomly packed, we have ξ ≈ ℓ, and, therefore: 
2∆ 
Ecr = . (39) 

 
eℓ 
Being in the diffusive regime where the coherence length ℓ has a small value is implemented in the 
Eliashberg spectral function, which is not that of a bulk superconductor but that of a thin film. Knowing 
the gap energy ∆ for a given material from the Eliashberg theory, one can estimate the critical EF Ecr 

for superconductivity suppression inside the film. 
For the example of NbN, the values of the critical EF needed to suppress the superconductivity in 10–
30 nm-thick thin films are of the order of 107 Vm−1, under the assumption of no-screening. This 
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estimate is one order of magnitude lower than the experimental values of the order of 108 Vm−1 reported 
in the literature for films of comparable thickness [59]. 
As already mentioned, this estimate still assumes a perfect penetration of the EF inside the sample, or, 
in other words, does not account for the screening of the EF inside the sample. To compute the 
magnitude of the external EF that has to be supplied to cause the suppression of superconductivity, the 
screening effects need to be taken into account. It is easy to show that, with a penetration depth of the 
EF of about 4 nm [63, 64], the predicted critical value of EF for the suppression of superconductivity 
becomes of the order of 108 Vm−1, in agreement with experimental measurements [59]. 
5. Conclusions and outlook 

We attempted to provide a holistic view of the effects that quantum confinement has on the physical 
properties of thin films, with a special attention to the case of ultra-thin films with a thickness lower 
than 10 nm. The starting point is the basic physics of quantum wave propagation through a slender 
rectangular box, with confinement along the vertical direction, and no confinement in the orthogonal 
plane. The confinement imposes a cut-off on the wavelength of the quasiparticles states that can 
populate the sample, which leads to simple mathematical forms of the corresponding DOSs and k-space 
topology. Importantly, due to the unavoidable disorder and non-smoothness of the interfacial atomic 
layers at the surface of the film, there is no discretization of the wavevector kz along the confinement 
direction in real-life thin films, because standard hard-wall BCs do not apply (kz is no longer a good 
quantum number). This fact cannot be captured by traditional theoretical approaches based on an ideal 
perfectly smooth rectangular box, but is, instead, well-captured by the new confinement approach 
reviewed here. 
In particular, the thin-film confinement leads to a ω3 form of the phonon DOS, instead of the ω2 Debye 
law, a theoretical prediction that has been confirmed experimentally by inelastic neutron scattering for 
ultra-thin films of ice [11], with a gradual crossover from ω3 to ω2 as the thickness increases, as also 
confirmed by MD simulations. The ω3 law for the phonon DOS leads to a T4 law for the heat capacity of 
ultra-thin films at low temperature, instead of the Debye T3 law. In future work, it will be of great 
interest to use these results for a quantitative theory of thermal conductivity in ultra-thin and quasi-
2D materials, such as graphene, van der Waals materials and layered films. 
Applying the same analysis of confinement to free electrons in thin metallic films, leads to a simple 
form of the electron DOS, which features a linear-in-energy trend at low-energy, which then crosses 
over into the standard square-root behaviour at a characteristic energy that depends on the film 
thickness and on the free-electron density. The theory also shows how two spherical hole-pockets of 
forbidden states grow inside the Fermi sphere as the thickness is decreased, up to the point where the 
spherical Fermi surface transitions into a surface with a different homotopy group Z. This transition 
coincides with the transition between the two regimes in the electron DOS and with a change of 
confinement-controlled redistribution of momentum states on the Fermi surface. For thickness L > Lc 

the growing hole-pockets inside the Fermi sphere push more states towards the Fermi surface, thus 
increasing the DOS at the Fermi level. Instead, for L < Lc, the new Z surface becomes more extended as 
L keeps decreasing, and therefore the momentum states at the surface become more spread out, 
implying that the electron DOS at the Fermi level decreases. 
This mechanism has fundamental implications for the electronic conduction in ultra-thin films, such 
as c-Si films with thickness below 10 nm, which fall in the regime L < Lc. We have demonstrated that 
this mechanism of ‘dilution’ of electron states at the Fermi level of the Z surface leads to an exponential 
increase of the resistivity upon decreasing the thickness. This effect is superimposed on the FS surface-
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scattering contribution and is responsible for the exponential increase of resistivity observed 
experimentally in [35] , which cannot be explained or reproduced by the FS theory. 
The same quantum confinement mechanism is responsible for the dome in the critical temperature for 
the normal metal-to-superconductor transition as a function of film thickness, observed experimentally 
in several systems. Again, the maximum in Tc coincides with the critical thickness Lc at which the Fermi 
surface distortion induced by confinement takes place. Implementation of the the electron DOS as a 
function of thickness into the BCS theory leads to analytical solutions for the Tc as a function of 
thickness. For a fully quantitative comparison, implementing the confinement model in the Eliashberg 
theory of superconductivity has recently led to the first quantitative theoretical description of the Tc as 
a function of thickness for two experimental systems, i.e. aluminum and lead thin films [7], in excellent 
quantitative agreement with the available experimental data. The same scheme led to the surprising 
prediction that few atomic layers of gold can become superconducting with the same Tc of aluminum 
[54]. Finally, the same confinement model can explain the existence of a critical value of EF to suppress 
superconductivity in thin films [67], a fact experimentally demonstrated in seminal experiments by 
Giazotto and co-workers [4]. 
This holistic framework, which describes electrons, phonons and superconductivity in thin films, can 
be extended in future work in several directions: 
(i) mechanistic understanding of thickness effect on thermal conductivity of ultra-thin and quasi-
2D materials [23] ; 
(ii) extension of the framework to include effects of lattice anharmonicity [74], distortions [75], and 
structural disorder [76] in the interior of the film (not just the interface); 
(iii) application of the framework to high-temperature cuprates superconductors [77], for which 
atomically-thin film are now available experimentally [78] ; 
(iv) improve the understanding of dielectric properties of thin films as a function of thickness, from 
ferroelectric [79] to superconductors [66] ; 
(v) extend the framework to different shapes of 3D nanostructures such as nanowires [80–82], 
nano-rings [83] (for the latter, see [84]) and Möbius strips [85], quantum-dots supercrystal assemblies 
[86], 2 D random networks of atomic clusters and nanoparticles [87], and artificial heterostructures of 
alternating superconductor and normal layers [88]. 
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