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1. Introduction and Some Related 
Topics  
Statistics is the science of making 
inference about a population using the 
information contained in a sample 
selected from it. The sample can be 
chosen by one of the techniques such as 
simple, stratified, systematic, cluster 
random sampling, etc. The choice of the 
technique depends on the objectives of 
the study, information available about 
the population of interest and the 
budget. The information obtained from 
the chosen sample is used to estimate 
the population parameters.  For finite 
population, the main population 
parameters are the mean ( ), 
proportion (p), variance ( 2   ), total 
( ). Less common parameter is the 
population size (N ).  Estimation of the 
parameters and their variances depend 
on  N , which is usually known. If N is 
unknown, then it has to be estimated 
first so that the population total and the 
variances of the estimators can be 
estimated.  

Assume that we have a population of size N (known). Let O1,...,ON be the population measurements.  
The population mean, total and variance are:  
N 

 Oi N 2 i 1 (Oi )2  i 1 , Oi =Nµ,     .  

 
 

 Abstract: Statistics, as the science of drawing 
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 i 1 N 
A simple random sample, SRS, of size n is a sample obtained from the population in such a way so that 
all possible samples of size n have equal chance of being the chosen sample, i.e. P( a subset of size n 
from a population of size N is the chosen sample )= 1/  Nn . Let X1,...,X n be a SRS of size n from this 
population.  
The usual estimators of the population mean& to talare, respectively: 
n 

ˆ i 1X   i  ,  ˆ N ˆ .  
n 
 It is well known that ˆ & ˆ are unbiased estimators of & , respectively. Their variances are:  
2 N n  
Var( ˆ) n    N 1  & Var( ˆ) N2Var ˆ .  

 
The main concern in this work is the estimation of the population total  when N is unknown. If N is 
known, then some estimators of N can be used as a guard against unsuitable estimates of . Capture-
Recapture technique is the main method used to estimate N . There are two main procedures of this 
technique; Capture- Recapture with Direct Sampling and Capture- Recapture with Indirect (or Inverse) 
Sampling:   

  Direct Sampling   
The direct Capture- Recapture sampling, known as Petersen’s method, goes back to 1894. Assume that 
there is a closed population with equal chance of each member to be selected. A random sample of m 
elements is drawn, tagged (marked) and then released back into the population. Then, after some 
enough period of time necessary for the marked units to mix with the remaining elements of the 
population, a second random sample of size n is drawn.  Let  be the number of recaptured elements 
in the second sample. Then, the Petersen estimator of the population size is:   
ˆ  nm.  
NP 

 
Τ 
An approximate estimator of the variance of Nˆ is (Sekar and Deming, 1949):  
Varˆ (NˆP)  mn(m Τ3)(n Τ)  ;   T  0 .  

 
Τ 

 
Actually, N P is the maximum likelihood estimator (MLE) and also the method of moments estimator 
(MME) of N . A modified estimator of N was proposed by Chapman (1951):  

NˆC 1,  

with variance estimated by Varˆ (NˆC)  (m 1)((Tn 1) 1)(2m(T T2))(n T).   

 
 

(Scheaffer et al., 1995). This estimator has the advantage of being valid even when Τ  0.   
  Inverse Sampling (Indirect Sampling)     
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Inverse sampling is another method for estimating N . In this method, a random sample of size m is 
chosen, marked and released. Later, elements are randomly selected from the population until k (fixed 
in advance) elements are being recaptured, then   
Nˆ Τ m,k m,  

 
k 
 Where,  Τ  is the total number of elements selected in the second random sample to obtain k previously 
captured elements. The variance of Nˆ is estimated by   
m2T (T  k ) 
Varˆ (Nˆ )  k 2(k  1)  , (Scheaffer et al., 1995).  

 
 

Capture-Recapture technique is an old method used to estimate the size of fish and wildlife population. 
Later on, the method was used for estimating other population sizes. Azevedo-Silva et al. (2009) 
analyzed the number of cases and incidence of childhood acute lymphoblastic leukemia by using two 
source capture-recapture procedures in three different cities in Brazil.  Estimating of birth and death 
rates in India was considered by SeKar and Deming (1949). Estimating the population size of Injecting 
Drug Users (IDU) was discussed by Luan et al.  
(2005). Estimating the number of people eligible for health service was studied by Smith et al. (2002).   
In their graduation project, Mohammad and Abdullah (2007) compared some Capture-Recapture 
techniques and cluster sampling for estimating the total number of times the word “Allah” "الله" appears 
in the Holy Quran. For more details about the estimation of population total and size, see also Gutierrez 
and Breidt (2009), Otienoet al. (2005), andArnab(2004).  
In many situations, the ratio estimator is used to estimate  of the variable of interest for a population 
of size N (unknown). One way to overcome the difficulty of not knowing N is to use a suitable auxiliary 
variable. Let O1,...,ON be the population measurements of the main variable of interest (O) and the 
corresponding values of an auxiliary variable (V) be V1,...,VN ; the population measurements are 
(O1,V1),...,(On,V n )   . Assume that there is a fair degree of association between O &V . Let  
(X1,Y1),...,(X n ,Y n )  be the elements of a SRS, from this population. Now, using the relation  

o o ,  

 
V V 

X 
we can estimate O by  ˆO  V . Y X 
 Let r  , an estimate of the variance of ˆO is given by:  
Y 
n 
N 
Varˆ ( ˆO) V 2 n 1 Sr2 , where Sr2 i 1 (Yi rXi   )2   , (Scheaffer et al., 1995).  

 
 

Nn   V 2 n 1 
Ahmad et al. (2000) introduced another method to estimate the population total and the population 
size. They used sequential sampling with replacement until a fixed (k ) members are repeated.   
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In this paper, the estimation of population total ( ) utilizing estimators of the population size is 
considered.  In Section 2, we consider the estimation of the population total when N is unknown using 
Direct Sampling. Two estimators are suggested for ; one is based on Chapman estimator of N and the 
other is based on a suggested modified estimator of N .  In Section 3,  is estimated using Indirect 
Sampling. The suggested estimators are compared.  Concluding remarks and suggested future works 
are outlined in Section 4.  
2. Estimation of When N is Unknown Using Capture-Recapture- Direct Sampling  
Assume that we have a closed population with an equal chance of each member to be selected in a 
random sample. In Direct Sampling, a SRS of n1 elements is drawn, marked(tagged) and the value of 
the random variable(r.v.) of interest(Y ) is noted for each element, the n1 items are released back into 
the population. After waiting enough period of time so that the marked elements mixed with the 
remaining population elements(this necessary when the population is a mobile one), a second SRS of 
n2 elements is drawn. Let T be the number of recaptured elements in the second sample. The values of 
the variable Y are noted for each of the n2 T elements. From the first and second sample we obtain a 
net random sample of size n , where  
n  n1  n2 T.        (2.1)  
Note that n is a r.v. (not fixed). T has a hypergeometric distribution with probability function:   

n1 N n1  
  

f (t)    P(T  t)   t  n2 t    , t 0,1,2,...,min(n1,n2) .  
 N  

 n2   
Actually, the smallest value of t is max(0,n1  n2  N ) , but in practice N is large and max(0,n1  n2  
N )   =0. Now, using the properties of hypergeometric distribution we have:  
nn 
E(n) E(n1 n2 T) n1 n2  1N 2      (2.2)     
Var(n) Var(n1 n2 T) n2 Nn1 1 Nn1 NN n12      
(2.3)  

 Petersen estimator of the population size ( N ) is:   
NˆP  n1n2 ,T  0,1,...,min(n1,n2).     (2.4) T 
Note that T may equal zero with positive probability; in this case, Nˆ P is . To overcome this difficulty, 
an alternative estimator of N was proposed by Chapman (1951) as:  

NˆC 1              (2.5)    

Now,   
E(NˆC   )  E (n1 1)(n2 1) 1   (n1  1n)(N2n   2 1) min( t n10,n2) 

t 1 1 nt1 Nn2 nt1 1  

 
 

 
 Τ 1     

min(n1,n2)   nt1 11 N n1    1  2   n1 1  N n1  
 n2 t      min(n 1,n 1)  

   (n2 1) t 0     nN2      1  t 1
  t nNn22 1 t  1  
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n1 1  N n1  
 
(N 1)min(n 1t 11 ,n2 1)  t  nN 2 n 211 

1 t  1  N    (n2 1)nN2  nN2 n11           (2.6)  

 
 

Clearly, Nˆ C is negatively biased. Also,   
 n1 N n1  
   

2  
Var(NˆC) E NˆC E(NˆC)   min( t n10,n2 )    N ̂ C  E(NˆC ) 2  t  

nNn22 t         (2.7)  
Using the two estimators (2.4) and (2.5), we suggest the following new estimator of N :  
NˆS   Nˆ P   if T 0  NˆP I(T 0) NˆCI(T 0) (2.8)  

 NˆC   if T 0 
Now,                    
ˆ )  n1n2 min( n 1,n2) 1 t P(T  t)   (n1 1)(n2 1) 1 P(T 0)  
E(NS 

 
t 1  

 n1 N n1  N n1  min(n1,n2 )  1    t  n t   n
   

 n1n2  
t 1 

 
 
t 
 
 

 
 

 2   2  .            (2.9)  
 N  

n2 

 
 

(n1 1)(n2 1) 1  N  
 n2   
 
  

Var(NˆS) E(NˆS E(NˆS))2 .  

But,       
  2 2 

 
NˆS E(NˆS )  NˆP I(T  0) E(NˆS )I(T  0) NˆC I(T  0) E(NˆS )I(T  0)  
 Nˆ p  I(T  0) E(NˆS )I(T  0) 2  NˆC  I(T  0) E(NˆS )I(T  0) 2 Nˆ p E(NˆS 

) 2I(T  0) NˆC E(NˆS ) 2I(T  0).  
Thus,  
min(n ,n ) n1n2 E(Nˆ ) 2 
Var(Nˆ S )  1 2  t  S    P(T  t) ((n1 1)(n2 1) 1  E(Nˆ S ))2 P(T 0) t 1  

n1 N n1  N n1  
 
 min( tn 11,n2)  n1tn2  E(Nˆ S ) 2  t Nn2 t ((n1 
1)(n2 1) 1    E(Nˆ S ))2  nN2       (2.10)  

n2  n2   
 The above results are summarized in the following lemma: 

Lemma (2.1)  
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 The expected value and variance of the suggested estimator, Nˆ S , of the population size N are given by  
 n1 N n1  N n1  

min(n ,n ) E Nˆ S  n1n2  1 2   1t    t  
Nn2 t (n1 1)(n2 1) 1  nnN22        ,  

 
t 1     

n2    
n1 N n1  N n1  

min(n ,n ) Var Nˆ S  1 2 n1tn2  E(Nˆ S ) 2  t Nn2 t 
 ((n1 1)(n2 1) 1    E(Nˆ S ))2  nN2      .  

t 1  
n2  n2   

 
    Given n , let Y1,Y2,...,Yn be the values of the variable Y for the sample elements. The suggested 
estimators of the population total ( ) are:  

ˆC NˆCY,    (2.11)  
and  

ˆS NˆSY, (2.12)  
We conjecture here that given n , Y1,Y2,...,Yn is a SRS from the population. We have not 
been able to prove this conjecture yet.  
Now,  
E( ˆS )  E(E( ˆS |n))  E(E(Nˆ SY | n))  E(Nˆ SE(Y | n))  E(Nˆ S )   

    n1 N  n1  N  n1   
    

 t 
n2    n2 t    min(n 11,n2 ) 1t     N  (n1 1)(n2 1) 1  

n2        (2.13)  

 
n1   t      n2   nN2     

 
Similarly, for ˆC we have  

   (n2 1) nN2 n11   

E( ˆC )  E(NˆC ) N    N2    
   n  
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N n 
(n2 1)  n2 1 1                 (2.14)    

     
N  
n2    

Also,  
Var( ˆS )  E(Var( ˆS   |n)) Var(E( ˆS |n))  E(Var(Nˆ SY | n)) Var(E(Nˆ SY | n))  

 E Nˆ S2Var(Y | n) Var(Nˆ S ),  
but  
Var(Y | n) 2 N n   ,  
n  N 1  
therefore,     ˆ 2 2   N n   2Var(Nˆ S )  N 2 1 E Nˆ 
S2 Nn 1 2Var(Nˆ S )  
Var( ˆS )  E NS n   N   1 

2   E NˆS 2 N NˆS2 2Var(NˆS).         
 

N 1  n  
Now,   
2 E  ˆS2 N   NE NˆnS      

N n 
   n1 N n1  N n1  

min(n ,n  Nn2n2 1 2 )      1  t  n2 t  N (n1 1)(n2 
1) 1 2  n2  .  
 

  

 
 

 
 

 
 

 
 
 
 

 
 

1 2 t 1  t2(n1 n2 t) nN2   n1 n2  
nN2    

Thus,  
  n1 N n1  N n1  

1 
   t  n t  N (n 1)(n 1) 1   n   Var(Nˆ ) 

E (Nˆ )     
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Var ( ˆS )  N 2 1 Nn12n22 min(tn 11,n2)  t 2(n1  n2 t ) N 2   1 n1 2 n2 2 
N2   S S 2 2Var (NˆS ). 

 
 

 
  n2   n2  

   
                             
(2.15)   
Similarly for ˆC , we have  

  
  
2  min(n1,n2)  Nˆ 2 

Var( ˆC )  N 1 N t 0    
n 

 
 

  
  

 
 

nt1 Nn2 nt1  
Var(Nˆ C ) E(Nˆ C ) 2   2Var(Nˆ C ).   

(2.16)   
 
  nN2       

 

The above results are given in the following lemma:  
Lemma (2.2)  
The expected value and the variance of the estimators of the population total are given by  
E( ˆS ) E(Nˆ S ), E( ˆC) E(NˆC)  
Var ( ˆ )    N  1 Nn2 n2 1 2    n1 Nn2 nt1  N 

(n1 1)(n2 1) 1 2 Nn 2 n 1     2 min(n ,n ) 1  t  
S  1 2 t2(n1  n2 t) nN   n1  n2  nN2  

  
  t 1     
 
  2   
Var (Nˆ S ) E(Nˆ S ) 2 2Var (Nˆ S ) 

N 2 1  min( n1,n2)  Nˆ 2  nt1 Nn2 nt1  
Var(Nˆ C ) E(Nˆ C ) 2   2Var(Nˆ C ).  

Var( ˆC )  N   n  N    

 
  t 0        
   n2    

Now, if N is known, then  can be estimated based on SRS of size n  n1 n2 T by  
ˆ NY,      (2.17)  

with  
E( ˆ) E(E( ˆ | n)) N .  
Thus, ˆ is an unbiased estimator of .  
Var( ˆ) Var(NY)  E(Var(NY | n)) Var(E(NY | n))  

 E N2 n2  NN 1n  Var N  NN2 12 
NE    1n 1   
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 n1 N  n1   
N 2 2  min(n ,n )  1  

 N 1  N t 10 2   t  n2 t     1      (2.18)  

 
 

  n1  n2 t   nN2     
 K 2,  

where,  
 n1 N  n1   
  

K  NN 21  N min( t n10,n2) n1 1n2 t   t  
nNn22 t    1     .  

 
 

 
The efficiency of ˆS with respect to ˆ is   
Eff ( ˆS; ˆ)  MSE( ˆ)   ,  

 
MSE( ˆS) 
where,  
MSE( ˆ) Var( ˆ), MSE( ˆS) bias(NˆS) 2 2 Var( ˆS).  
Now, let  Var( ˆS )  L 2 Var(Nˆ S ) 2,where  

 2 min(n ,n ) L  Nn   t 11 2 t 2 (n1  n2 t)  t)  N
 1 1n)(1n 2 n 21) 1 2 P(T  0)    
1 1 n22   1 P(T  (n 

 
 

 
N 1 Var(Nˆ S ) E(Nˆ S ) 2     

 
then,  
Var( ˆ) K 2 

 
Eff ( ˆS; ˆ)    MSE(N ˆ ) 2  L 2 MSE(NˆS) 2 L 2 .  
S 
The efficiency can be rewritten in terms of the coefficient of variation (CV) given by CV  , (  0 ) as  

 
 

K 2 
CV(y)  

MSE(NˆS)    (2.19)  
Eff ( ˆS; ˆ)  
L 2 
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1  CV(y)  
MSE(NˆS) 
 The efficiency of ˆS and ˆC w.r.t. ˆ are given in Tables (2.1) and (2.2) respectively. Also, the 
efficiency  
of ˆS w.r.t. ˆC is given in Table (2.3). Based on these tables, we can see that ˆS is more efficient 
than ˆC for small expected sample size. ˆS & ˆC are more efficient than ˆ when E(n) is small and 
for large CV .   
3. Estimation of When N is Unknown Using Capture-Recapture- Indirect Sampling    
Indirect sampling is another Capture -Recapture method for estimating  .  In this method, sampling 
continues until a fixed number (T ) of recaptured elements are obtained. So, a random sample of size 
n1 is chosen, marked and released. Later, we select elements randomly from the population until T 
elements are being recaptured. Let n2 be the total number of elements selected in the second random 
sample to obtain T previously captured elements, then from the first and the second sample we obtain 
a random sample of size n elements, where  
n  n1 n2 T.        (3.1)  
Here, n2 is a random variable (not fixed); it has the negative hypergeometric distribution with 
probability function given by:  

n2 1 N  n2  
 T 1  n1 T   ,     n 

 
f (n2)    2 T,T 1,...,N  n1 T.  (3.2)  

N  
 n1   

Also, E(n2) T(N 1)    (Balakrishnan 2003) n1 1 

 
and Var(n2)   T(N (1n)(N1 ) 2n(1n)(1 n 12 )1 T)    (Khan, 1994).  

 
1  
Now,  
E(n) E(n1 n2 T) n1 T T(nN 1 1 1)   n1 T Nn1 n11  (3.3)      

 
 

 
Also,  
Var(n) Var(n2)  T(N   (1n)(1 N1 )2n( 1n)(1 n 12 ) 1 T)             (3.4)  

 
Table (3.1) contains the expected value of the sample size for different values of n1,T,N .  It can be seen 
that E(n) is increasing in T for fixed n1and decreasing in n1for fixed T .  
The estimator of the population size N is NI ˆ  n1T n 2 ,  1 T n1,T is integer.  (3.5)  
Now,   
E(Nˆ I )  E n1n2   n1(N 1)                    (3.6)  

 
 T  n1 1 

Clearly, E(NˆI ) does not depend on T and increasing  in n1, Nˆ I is negatively biased. Now,  
Var(Nˆ I ) Var n1n2   T n 12 2 Var(n2)   
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 T  
n12 (N 1)(N n1)(n1 1 T) 

 
   T (n1 1   2(n1  2) .          (3.7)   

) 
Hence,  
1 MSE(N ˆ )  (n1    2 nT12 (N 1)(N(n 1n 1)(2)n1 1 T) n1 N 2    .          
(3.8)  
I 

 
1)  
It can be seen from (3.6) that this estimator of N can be corrected to be unbiased estimator of N as 
follows:  
E(Nˆ I )    n1(N   1)   , n1 1 

 
which gives  
E(Nˆ I n 1 1 )  N 1.  

 
n 1 
So, the estimator  
Nˆ I n1n 1 1  1  n2(nT1 1)   1    

 
 

 
is an unbiased estimator of N . Let   
NˆI*  n2(n1 1)   1,         (3.9) T 

 
then  
E(Nˆ I*)  N .  
Therefore, the mean square error of Nˆ I*  is  
( 
MSE(Nˆ I*) Var(Nˆ I*)  n 1T 21)2   Var(n2)  (N 1)(NT( n1n1 )(2n)1 1 T) . (3.10)  

 
 

2 
Clearly,Var(Nˆ I ) n1n 1 1    Var(Nˆ I*),thus, for any values of N,n1 and T ,Var(Nˆ I 
) Var(Nˆ I*) , however,  

 
 

the MSE(NˆI ) is not necessary less than MSE(NˆI*)  
The efficiency of Nˆ I w.r.t. Nˆ I* is:  
Eff (NI 
ˆ *, Nˆ I )  MSEMSE((NNˆˆI I*) ) .  
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Table (3.2) contains some numerical values of the efficiency of Nˆ I w.r.t. Nˆ I* . Clearly, the two 
estimators almost have the same performance.  
Given T,   Y1,Y2,...,Yn are the values of variable for the sample element. Two estimators of the  
population total, , are: ˆI  Nˆ IY and ˆI*  Nˆ I*Y ,  
Now,  
E ˆI  E E ˆIn2  E E Nˆ IY n2 E Nˆ I E Y n2   
n (N 

E Nˆ   I     1 1)   .    
n1 1 
  
Also, E( ˆI*)  N . The variance of ˆI and ˆI* can be derived as follow  
Var ˆI  E Var ˆI n2 Var E ˆIn2  E Var Nˆ IY 
n2 Var Nˆ I   

E Nˆ I2Var Y n2 2Var Nˆ I E (Nˆ I2Var(Y | n2)) 2Var Nˆ I   
n12n22 2   N  (n1 n2 T)   2Var Nˆ   I   
 E  T2 n1 n2 T N 1  
 

n12 2 E n22(N (n1 n2 T))  

   T 2(N 1)  n1 n2 T  2Var Nˆ   I  
 n2 1 N n2  

  2 2 N n1 T   n22(N (n1 n2 T)) T 1 n1 T  
 2Var Nˆ  n1   

 
 T(N 1) n 2 T    n1 n2 T    nN 1     I 
 
 
B 2 2Var(Nˆ I ),     (3.11)  

 
where,  

   n2 1 N n2  
      

 
 

B  n12 N 2n 1 T n22(Nn 1 (nn12 nT2 T)) T 1 N n 1 T 
   .       (3.12)  

T(N 1) n T    n1    
Now,  
Var( ˆI*) E(Var( ˆI*n2)) Var(E( ˆI* n2)) E(Var(Nˆ I*Y n2)) Var(E(Nˆ I*Y 
n2))  

 
E(N ˆ*2Var(Y n2)) 2Var(Nˆ I*)  E n2(nT1 1) 1 2 n1 n22 T N 

nN1 n12 T    
I 

 
 (N 1)(N n1)(n 1 1 T) 2   
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T(n1  2) 

2  2  N  
T 2(N 1) E n2(n1 1) T  n1 n2 T 1    

 
 

(N 1)(N n )(n 
 1 1   1 T)  2   

T(n1 2) 
 Z 2  J  2,  

where  

    (3.18)  

 
Z T 2(N1   1) E((n2(n1 1) T)2(n1 Nn2  T 1)) & J  (N 1)(NT( n1n1 )(2n)1 1 T) .  

 
 

 
Note that, the previous derivations depend on the fact that n2 has a negative hypergeometric 
distribution.  
Now, if N is known, then  can be estimated based on a simple random sample of size n  n1 n2 t 
by ˆ NY .   
2   N n  Var N  
Var( ˆ) Var(NY)  E(Var(NY | n)) Var(E(NY | n))  E N 2 n  N 1   

 
 

N2 2   N   E  1  N 1  n  

 
 N 2 2 E  N   N 2 2    N3 2 E 1    N2 2  

 
N 1  n  N 1 N 1 n  N 1 

 n2 1  N  n2  
1  
   NN3 12 Nn 2n 1T T   n1  n2  t  T 1 N  n 1 T 

  NN2 1 2 H 2,  

 
 

 
  
   n1    

where,  
  n2 1 N n 

N   1  T 1  n 2   H  N 21 NN 2n 1T T n1  n2 t  N 1 T 

 1    .  

 
 

 n           n1    
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The efficiency of ˆI with respect to ˆ (obtained for a sample size equal the expected sample size) is: 
Eff ( ˆI ; ˆ)  MSE( ˆ)   ,  

 
MSE( ˆI ) 
MSE( ˆI ) bias( ˆI ) 2 Var( ˆI ) bias(Nˆ I ) 2  B 2 Var(Nˆ I ) 2        
  B 2 MSE(Nˆ I ) 2 ,  
Eff ( ˆI ; ˆ)  B 2    MSEH  2 (Nˆ I ) 2   .  

 
The efficiency can be rewritten in terms of the coefficient of variation (CV), given by CV  , (assume  

 
 

 0 ), as:  
H   2 

CV(y)    .    
MSE(Nˆ I ) 
Eff ( ˆI ; ˆ)  
B 2 
1  CV(y)  
MSE(Nˆ I ) 
Some values of the efficiency of ˆI w.r.t. ˆ are given in Table (3.3). Similarly,   
Eff ( ˆI*; ˆI )    B CV(y) 2  MSE2 (Nˆ I ).  

 
Z CV(y)   J 
The efficiency of ˆI*  w.r.t. ˆI is  given in Table (3.4). Based on the tables, we have the following 
conclusions:  
1. From Table (3.3), the efficiency of ˆI w.r.t. ˆ increases when the CV increases.  
2. For small sample size, the efficiency of ˆI w.r.t. ˆS is greater than or close to one. Also, the 
efficiency of ˆI  
w.r.t. ˆC is greater than one for small sample size and small value of the CV.  
3. For large sample size, the efficiency of ˆI w.r.t. ˆS is less than one.  
4. For large value of the coefficient of variation, the efficiency of ˆI w.r.t. ˆC is less than one, and 
it decreases when the sample size increases.  
5. ˆI* is more efficient than ˆI for large value of the expected sample size and CV.  
  
4. Conclusions and Suggestions for Further Research  
In this paper, four different estimators for the population total are discussed and from the results 
obtained we can conclude the following:  
1. For large expected sample size, when we use Direct Sampling we found that the estimator of the 
population total ˆC based on Chapman estimator NˆC is better than the estimator ˆS based on the 
suggested modified estimator NˆS . On the other hand, if the expected sample size is small then ˆS is 
more efficient than ˆC .  
2. For small expected sample size and CV, we found that it is better to use Indirect Sampling to 
estimate  than using Direct Sampling.  
3. The bias in Nˆ I can be corrected to obtain an unbiased estimator of N , Nˆ I*, and also an unbiased 
estimator of .  
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Suggestions for Future Work  
• If N is known, then an estimator of N (pretending it is unknown) can be used as a guard against 
unsuitable or insufficient sample. So, we may suggest estimator of  conditioning on Nˆ to be between 
N  and N  for some .  
• Estimation of  based on other sampling techniques when N is unknown can also be considered 
next.  
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Table(2.1): Eff (NˆS; NˆC )  
N  E(n)  MSE(Nˆ S )  MSE(Nˆ C )  Eff (Nˆ S ; 

NˆC )  
1000  51.9  728205.9  732439.8804  1.005814  
1000  57.6  332593.5929  402913.9604  1.21143  
1000  61.4  177120.7456  289004.9081  1.631683  
1000  67.1  84362.2724  213053.84  2.525464  
1000  72.8  117772.4201  201699.6164  1.712622  
1000  73.8  132095.56  203386.25  1.53969  
1000  80.4  275199.96  229010.9225  0.832162  
1000  92.8  598569.24  286622.6784  0.478846  
1000  116.5  918583.24  311101.1376  0.338675  
5000  227.6  16746267.56  7491881  0.447376  
5000  237.3  19768303.04  7903480.49  0.399806  
5000  247.0  22055514.24  8134961  0.36884  
5000  252.82  23062512.25  8193942.25  0.355293  
5000  253.79  23204389.44  8198340.81  0.35331  
5000  266.4  24406592.01  8135765.61  0.333343  
5000  290.65  23995928.16  7566230.24  0.315313  
5000  314.9  21416904.64  6725680.81  0.314036  
5000  344.0  17364010.41  5689186.49  0.327642  

Table (2.2): Eff ( ˆC ; ˆ)  
N  E(n)  CV  0.5  CV 1  CV  5  CV 10  

1000  51.9  0.006241  0.024954  0.615966  2.370284  
1000  57.6  0.010147  0.040398  0.878713  2.499718  
1000  61.4  0.01319  0.052189  0.968865  2.147734  
1000  67.1  0.016208  0.063373  0.920717  1.595043  
1000  72.8  0.015642  0.060687  0.773051  1.220907  
1000  73.75  0.015294  0.059299  0.748042  1.17425  
1000  80.4  0.012367  0.04792  0.598649  0.93414  
1000  92.75  0.008463  0.032934  0.440701  0.718821  
1000  116.5  0.006056  0.023686  0.346428  0.603322  
5000  227.6  0.003486  0.01378  0.250864  0.542584  
5000  237.3  0.003163  0.012512  0.230536  0.506165  
5000  247.0  0.002947  0.011661  0.216907  0.482064  
5000  252.82  0.002855  0.011299  0.211125  0.471948  
5000  253.79  0.002842  0.011248  0.21031  0.470536  
5000  266.4  0.002721  0.010773  0.202774  0.457653  
5000  290.65  0.002668  0.010566  0.199714  0.453306  
5000  314.9  0.002756  0.010912  0.205493  0.464102  
5000  344.0  0.002964  0.011728  0.218439  0.486251  

 
Table (2.3): Eff ( ˆS ; ˆ)  
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N  E(n)  CV  0.5  CV 1  CV  5  CV 10  

1000  51.9  0.006277  0.025099  0.619341  2.380999  
1000  57.6  0.012284  0.0488  1.002176  2.573034  
1000  61.4  0.021431  0.083741  1.20335  2.066933  
1000  67.1  0.040074  0.147658  1.047878  1.294508  
1000  72.8  0.026292  0.096826  0.684161  0.844183  
1000  73.75  0.023162  0.08576  0.634498  0.793077  
1000  80.4  0.010235  0.039044  0.393256  0.548862  
1000  92.75  0.004054  0.015796  0.215683  0.356763  
1000  116.5  0.002056  0.008094  0.134857  0.264126  
5000  227.6  0.00156  0.006172  0.114769  0.254933  
5000  237.3  0.001265  0.005014  0.096394  0.223911  
5000  247.0  0.001088  0.004314  0.084914  0.204024  
5000  252.82  0.001015  0.004028  0.080156  0.195766  
5000  253.79  0.001005  0.003988  0.079481  0.194601  
5000  266.4  0.000908  0.003606  0.073122  0.183947  
5000  290.65  0.000842  0.003348  0.069215  0.179724  
5000  314.9  0.000867  0.003445  0.071808  0.188995  
5000  344.0  0.000973  0.003866  0.080548  0.211892  

  
Table (2.4):Eff ( ˆS; ˆC)  

N  E(n)  CV  0.5  CV 1  CV  5  CV 10  

1000  51.9  1.005811  1.005801  1.005478  1.004521  
1000  57.6  1.210561  1.207977  1.140504  1.02933  
1000  61.4  1.624743  1.604566  1.24202  0.962378  
1000  67.1  2.472407  2.329969  1.138111  0.811582  
1000  72.8  1.680817  1.595495  0.885014  0.69144  
1000  73.75  1.514448  1.446229  0.848211  0.675391  
1000  80.4  0.827601  0.814762  0.656905  0.587559  
1000  92.75  0.479045  0.47962  0.489408  0.496317  
1000  116.5  0.339446  0.341712  0.389279  0.437785  
5000  227.6  0.447514  0.44792  0.457494  0.46985  
5000  237.3  0.400046  0.400759  0.418129  0.442368  
5000  247.0  0.36913  0.36999  0.391477  0.42323  
5000  252.82  0.355601  0.356517  0.379659  0.414804  
5000  253.79  0.353621  0.354545  0.377924  0.413574  
5000  266.4  0.333682  0.334688  0.36061  0.401936  
5000  290.65  0.315694  0.316825  0.34657  0.396475  
5000  314.9  0.314463  0.315735  0.349444  0.407227  
5000  344.0  0.328139  0.329615  0.368744  0.435766  

 
Table (3.1): Expectation of n  
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N  T  n1  E(n)  

1000  1  50  68.627  

1000  3  50  105.88  

1000  4  50  124.51  

1000  5  100  144.55  

1000  10  100  189.11  

1000  15  100  233.66  

1000  25  250  324.7  

1000  63  250  438.25  

1000  75  250  474.1  

5000  1  100  148.51  

5000  2  100  197.03  

5000  8  400  491.77  

5000  32  400  767.08  

5000  63  400  812.97  

5000  50  500  949.1  

5000  65  500  1083.8  

  
  
  
  
  
  
  
  
 
Table(3.2): Eff (NˆI ; Nˆ * I )  
  

N  E(n)  Eff (NˆI ,NˆI*)  
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1000  68.627  0.96155  
1000  105.88  0.962362  
1000  124.51  0.962765  
1000  144.55  0.980766  
1000  189.11  0.981287  
1000  233.66  0.981863  
1000  324.7  0.992361  
1000  438.25  0.993052  
1000  474.1  0.993324  
5000  148.51  0.980392  
5000  197.03  0.980514  
5000  491.77  0.995068  
5000  767.08  0.995215  
5000  812.97  0.995449  
5000  949.1  0.99621  
5000  1083.8  0.996266  

  
Table(3.3): Eff ( ˆI ; ˆ)  

N  E(n)  CV  0.5  CV 1  CV  5  CV 10  

1000  68.627  0.004084  0.016098  0.275107  0.553307  

1000  105.88  0.008043  0.030201  0.254925  0.332162  
1000  124.51  0.009028  0.032967  0.217609  0.263777  

1000  144.55  0.0087  0.030742  0.162453  0.187566  

1000  189.11  0.012318  0.036371  0.096949  0.102273  

1000  233.66  0.013651  0.034478  0.067367  0.069437  

1000  324.7  0.013146  0.026527  0.039341  0.039944  

1000  438.25  0.011182  0.014516  0.016046  0.016099  

1000  474.1  0.01013  0.012492  0.013499  0.013533  

5000  148.51  0.001876  0.007452  0.1538  0.398104  

5000  197.03  0.002887  0.011358  0.186294  0.359178  

5000  491.77  0.003979  0.014462  0.092053  0.110597  

5000  767.08  0.007933  0.018096  0.030669  0.031349  

5000  812.97  0.008032  0.0173  0.027427  0.027938  

5000  949.1  0.007608  0.014631  0.019868  0.020093  

5000  1083.8  0.008022  0.012369  0.015381  0.015499  

  
  


