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1. Introduction 
One important class of second order 
nonlinear differential equations is 
related to some heat-conduction 
problems and diffusion problems. In 
this paper, we study the following 
strongly nonlinear two-point boundary 
value problem   
    , ,  0    1 

                                                                      
(1)  

      0
  , y 1  , 
  
where  and  are given constants in

 ,  ∈  ,  ∈  
and  
  0 for all  ∈ .  
Since it is difficult to give the analytic 
solution of the problem (1), even if the 
function ,  is linear in , various 
numerical methods have been 
developed to solve this problem. For 
example, we quote finite difference 
methods in [2],[5], Petrov-Galerkin 
method in [16], shooting methods in 
[1], [7], [21], [22], spline methods in 
[4], [18], [15], variation iteration 
methods [20], [6], collocation methods 

[9], asymptotic approximation [23] and Numeral’s method in [24].   
In [24], the problem (1) is discretized by fourth order Numerov’s method and nonlinear monotone 
iterative algorithm is presented to compute the solutions of the resulting discrete problems. Some 
applications and numerical results are given to demonstrate high efficiency of the approach. 

 Abstract: This paper addresses a significant class of 
strongly nonlinear second-order differential equations 
arising in heat-conduction and diffusion problems. The 
specific boundary value problem considered is 
described by: 
y'' = f(x, y, y'), 0 < x < 1, 
y(0) = 0, y(1) = 1, 
where f is a given function, x ∈ [0, 1], and y is a function 
of x. 
Analytically solving this problem is challenging, 
particularly when the function f(x, y, y') is nonlinear in 
y. Consequently, various numerical techniques have 
been developed to tackle this problem. These methods 
include finite difference approaches, Petrov-Galerkin 
methods, shooting methods, spline methods, variation 
iteration methods, collocation methods, asymptotic 
approximations, and Numeral's method. 
This paper delves into the analysis and application of 
these numerical methods for solving the given strongly 
nonlinear boundary value problem. The goal is to 
provide insights into the efficacy of these approaches 
and their suitability for different scenarios. 
Understanding the nuances of these methods is crucial 
for tackling a wide range of practical problems in heat-
conduction and diffusion. 
Keywords: strongly nonlinear differential equations, 
boundary value problem, numerical methods, heat-
conduction, diffusion.   
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In our study, we develop the Iterated Defect Correction (IDeC) technique by using B-spline 
interpolation of odd degree. The method of IDeC is one of the most powerful technique for the 
improvement of numerical solutions of initial and boundary value problems for ordinary differential 
equations. The idea behind the IDeC is carried out in the following way:  
Compute a simple, basic approximation and form its defect with respect to the given differential 
equation by a piecewise interpolant. This defect is used to define a neighboring problem whose exact 
solution is known. Solving the neighboring problem with the basic discretization scheme yields a global 
error estimate. This can be used to construct an improved approximation, and the procedure can be 
iterated. IDeC methods originated from an idea of Zadunisky [25]. An asymptotic analysis  → 0 of such 
an iterative procedure based on global error estimates is given by Frank [11, 12, 13]. In [14] Defect 
Correction for stiff differential equations, in [17] Mixed Defect Correction Iteration for the solution of 
a singular perturbation problem, in [19] an error analysis of Iterated Defect Correction methods for 
linear differential-algebraic equations, and in [10] the Iterated Defect Correction Methods for Singular 
two point boundary value problems are studied.  
The outline of the paper is as follows: In Section2, the formulation of IDeC technique to the system of 
nonlinear two-point boundary value problem corresponding to (1) is given to use for improving the 
approximate solutions. We establish the asymptotic expansion of the global error for the implicit 
trapezoidal method in Section3. In Section4, we show that for an interpolating B-spline polynomial of 
degree 2  1 ( ∈  ) with the maximum IDeC step is  and the convergence is . In Section5, two test problems 
are presented by numerical results to verify the theoretical results in the previous chapter. Moreover, 
we present the efficiency of the IDeC method to apply the transformed form of Troesch’s problem in 
[6]. The IDeC method provides the high accuracy result for large parameter.  
2. Application Of Iterated Defect Correction Techniques  
Applying the transformation   to (1), we obtain the following associated system of the first order    
where ,    with the boundary conditions0  , 1   and ,  denotes the exact solution for (2).   
The problem (2) will be called as original boundary value problem (OP). The approximate solutions,  
and  
 are obtained by implicit trapezoidal method which are based on the following difference schemes   
  
,  ,  , 
                                                        (3)  
,  ,  , 
  
on the uniform grid  for   0,1, … , , with stepwise   1/ and boundary conditions  ,  .  
The nonlinear system (3) is solved by Newton’s method for  and . Mathematica has a built-in command 
to solve this nonlinear equation. We interpolate  and  by B-Spline piecewise polynomial functions  and  
of fixed degree, 2  1 that satisfies the following conditions: 
.Interpolation:  
, 
  
,   0,1, … ,  
.Smoothness:  
  
lim   lim , lim   lim   
→ → → → 
lim   lim ,   0,1, … ,2  
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→ → 
  
  
. Interval of definition:   and   is polynomial of degree at most 2  1 on each 
subinterval ,  . 
The interpolations yield the defects when they substitute into (OP) (2)   
,  
  
,  . 
  
By adding these defect terms to the right hand side of (OP) (2), we get a new BVP which is called by 
neighboring boundary value problem (NP) as   
  
 ,    , 
                                                                          (4)  ,    . 
  
Notice that; the exact solutions of (4),  and  are known. Then we solve (4) by the implicit trapezoidal 
method to obtain the numerical approximate solutions  and ,   0,1, … ,  with   
  
0 and  1.  
  
We can use the known global discretization errors  and  of (NP) (4) as an estimate for the unknown 
global discretization errors and . The original idea of estimating global  
discretization error in this way is due to [25]. The improvement of our first solutions   and   is 
given by  
,   1,2, … ,   1 
  
,   0,1, … , . 
This procedure can be used iteratively as    
,   1,2, … ,   1 
                                                  (5)  
,   0,1, … , , 
  0,1, … ,  , where denotes the defect number.   
  
3. Asymptotic Expansion of the Global Errors  
The truncation error for the implicit trapezoid method , is obtained as    
, 
,    ℓ ,    1,2, … , ,  
, 
where ℓ .  
!  
The asymptotic expansions of the global errors of the implicit trapezoidal method applied to (OP)(2) 
and (NP) (4) are derived by using the same technique in Frank [13]. The asymptotic expansion of the 
global error for (OP) is as follows   
∑  Δ ,                                                             (6)  
where ∥ Δ ∥  ,  
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 ,  , ,  ,   
,  
and   is the smooth solution to the following system of linear boundary value problem  
              
   ℓ             const.  ,  , … ,  , ,  , … ,  ,  ,     
              
              
              (7)  
  
with the boundary conditions  

  
     0   1  0,  

where  
1 
0 

0 
 , 
0 

 
0 
1 

0 
 , 
0 

,    
,  

 , 0                                                                    
(8)  

and  is the function of ,  , … ,  for   1,2, … ,2  2, ,  are functions of partial derivatives of  and  of order  2  
1,  is the smooth function with  0, and const. is a constant independent of  and . By similar 
considerations, we define the asymptotic expansion of the global error for the -th neighboring boundary 
value problem (NP) (4),   
∑   Δ ,                                                   (9)  
  
where  ∥ Δ ∥  ,  
  
 ,   ,  ,  ,   
, 
 
and   is the smooth solution to the following system of linear boundary value problem.   
 ℓ           
const.  ,  , … ,  ,  ,  , … ,  ,  ,       (10)  
 with the boundary conditions   

where  
0   1  0,   

 ,   ,   

  

,    0   

and  ,   are obtained by 
substituting  
4. Error Analysis  
  

 instead of   in ,  .    

Since the 2  2 Jacobian matrix  is the smooth matrix valued function for all  ∈  , there exist fundamental 
matrices  and  which satisfy the corresponding homogeneous parts of differential equation systems (7) 
and (10) respectively,   
  

                                                                                       (11)  
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                                                           (12)  

  
Then the solutions to linear non-homogeneous boundary value problems (7) and (10) can be 
represented in the form  
; ℓ   const.                                           (13)  
  
;  ℓ  const.  ,                              (14) 
where ;  and  ;  are Green’s matrices are defined by 
0 ,     
;                                                          (15)  
1 ,    
  
0 ,     
;                                              (16)  
1 ,    , 
and  is an invertible matrix such that    0   1   0   1. Notice that; in the following statements, ∥⋅∥ 
corresponds to the induced matrix norm of the maximum norm ∥⋅∥ for vectors and const.is a constant 
independent of  and .   
  
Lemma 1: Let  and   be fundamental matrices of (11) and (12) respectively, ;  and  ;   
be the Green’s functions defined in equations (15) and (16) respectively, then for all  ∈ 0,1  
  
∥     ∥ const. ∥     ∥,                                          (17)  
  
∥   ∥ const. ∥     ∥,                                          (18)  
∥ ;    ;  ∥ const. ∥     ∥.  
Proof: The subtraction of the corresponding integral equations of (11) and (12), adding,   and  
taking the norm of both sides give   
∥     ∥∥ 0   0 ∥  ∥   
    ∥  ∥∥     ∥ .  
For all  ∈ 0,1, it is easily shown that   
  
∥    ∥ const. ∥   |.  
And by applying the Gronwall’s inequality (see in [3]) it is obtained that   
  
∥     ∥ const. ∥    ∥,   ∈ 0, .   
For equation (18) we can easily deduce that   and   satisfy the following differential equation 
systems   
   and  . 
Therefore, an argument similar to the one used in the above statements shows equation (18). For 0    , 
we have   
;    0                                                                    (19)  
  
;    0 .                                                       (20)  
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Setting  0   0 and subtracting (19) from (20) gives   
  
  

 
;    ;    .  

Inserting  
  
  

  to the right hand side of the above equation and taking the norm of both 
sides yield   
∥ ;    ;  ∥∥     ∥∥   ∥  
          
          
          
          
          
 ∥   ∥∥  ∥.  

Since  
  
 

 and   are continuous on 0,1, applying (17) and (18) follows that   
∥ ;    ;  ∥ const. ∥     ∥.  

Similar arguments hold for     1.    
Lemma 2: For problems (2), (4) and for all  ∈ 0,1, we have   
const.  for   0,1, … ,2 

∥     ∥ const.  for   2  1 ,  
const. for   2  2 
  

  
∥   ∥ const. ∥   ∥,                                     

(21)  
where  : 0,1 →  is a vector valued B-spline interpolating polynomial of odd degree 2  1   
 ∈   with a const. not depending on  and . 
Proof: We know that   does not interpolate the exact value of   at   so we need to define the  
auxiliary function   
∑  Δ ,                                                     (22)  
where ,   0,1, … , . Therefore the 2  1 odd degree B-spline interpolating polynomial   
interpolate   at  . From [8] we have   
∥     ∥                                       (23)  
Using the   derivative of the identity   and we get   
  

     .  
Hence the equations (22) and (23) gives    
∥     ∥   as  → 0    
Subtracting   from   in the equations (13) and (14) and inserting  ;   we get   
  
;    ,    
              
              
    ;  .                                      (24)  
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Now consider the second term of the right hand side of (24) as  
;  ;    
;       1 2,  
where   and   represents the corresponding integrals. Applying integration by parts for  , we obtain   
  

 ;  ; 0 0   0
  

 
 
 
 
 
 
 
  ;  .  

  

Using the derivative 
properties of spline 
interpolation, i.e. of ; 
  we get   
  

0   0 and substituting the 
corresponding term  

0    

   
   
 0 

.  
 

By applying similar 
arguments for   and 
using 1   
  

1, we get    

1    

   
   
 1 
  

.   

Since 0 1 
  

 is identity matrix, 
we derive   
;    

 

   
   
   
   
   ;  
  

,   
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where ;    1 and ;    0   . If we substitute equation 
(24) and taking the norm of both sides we get   
  
∥ ;  ,  ∥∥  ‖ 

 in the  

∥ ;  ∥∥  ∥   ∥   ;  ∥∥  
  

 
 
 
 (25)  
∥ . 

Since ∥ ;  ∥, ∥  ;  ∥, ∥  ;  ∥ are bounded for 0    1 and 0   1, combining the results  
in Lemma 1 with the equation (25), we obtain the equation (21).  
Lemma 3: Let   and   be defined in (13) and (14), then for all  ∈ 0,1  
∥  ∥ const. ∥   ∥,                                                   (26)  
for   1,2, … ,   1.   
Proof: For   1, it is proved in lemma 2. Suppose that the assumption is true for   1 with  2. The  
subtraction   from   yields   
  
 ℓ ;  ;    
const. ;                                             (27)  
  
By adding  ;   to the second part of the above integral and taking the norm of both sides we 
obtain   
∥ ;  ;   
              
              
              
              
             const. ∥ 
 ∥.  
  
Hence; from the similar consideration as in the lemma 2 for , we deduce that   
  
∥  ∥ const. ∥  ∥ const. ∥  ∥  
const. ∥  ∥.                                                                               (28)  
  
From the induction hypothesis and taking the derivatives of the differential systems (7) and (10), we 
conclude that   
  
∥   ∥ const. ∥  ,                                              (29)   

∥  
  
for   2, … ,2  1 and also   

  ∥ const. ∥   ∥                                (30)  

  
∥  ∥ const. ∥     ∥,                                                         (31)  
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∥  ∥ const. ∥     ∥,                                                         (32)  

where  and  depend on sufficiently smooth functions of  and . Combining the inequalities (29), (30), 
(31) and (32) we get   
  
∥  ∥ const. ∥   ∥.                                              (33)  
  
Substituting (33) in the inequality (28) gives (26).    
  

Lemma 4: For the problems 
(OP)(2) and (NP)(4), with   0,1, … 

,   1, for all  
∈ 0,1  
 

 
where  is B-
spline 

polynomial of fixed degree 2  1 and ,  satisfy the equations (13) and (14) respectively.  
Proof: For   0 the inequalities, (34) and (35) are proved in lemma 2 and 3. Suppose that (34) is 
true for 1  
    2. For      1, we define a new function   
  
∑  Δ  Δ ,          
           (36)  
where Δ  Δ  is polynomial of degree 2  1 which interpolates the values   
  
Δ  Δ   
  
and ∥  Δ  Δ  ∥  for   0,1, … ,2  1. Taking the  derivative of (36), we get, for   0,1, … ,2  1,  
  

  ∑    ,           
              
  (37)  
  

 
  . 

 
∥ 

    ∥ 
                                        

(39) 
const. 

 for
 3    2 . 
  

     
 const.  for 0    2  2  

  

const.  for                          (34)  
2  2  1    2  2 , 

 const. const.  for 
for 

1       
                                (35)     
    1      1 , 

The term  
get   
  

 depends on    Thus by induction hypothesis we  

 const.  for 0    4  2  
  
Substitution (38) in (37) 
yields   
  

const.  for                      (38)  
5  2    2  2  2. 

 const.   for 0    2 
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The identity    

     
 and from [8] with (39) implies (34). By using similar technique in proof of lemma 3 and by inequality 
(34) the inequality (35) can be showed.   
Theorem. In case of the algorithms for (OP) (2) and (NP) (4), if we choose the interpolating B-spline  
polynomials of 2  1 degree ∈  , then for all  ∈ 0,1  
∥   ∥ const.  ,                                                                  (40)  
for   0,1, … ,  and const.is independent of  and .   
  
Proof: From the iteration, we write   
  
.                                                                   (41)  
If we subtract (9) from (6) we obtain   
∥  ∥ ∑ ∥  ∥ ∥ Δ  Δ ∥,                                (42)  
whereΔ  Δ . Then by using the inequalities (35) in the lemma 4, we get   
  
   c onst.    c onst.   const.    
      const.  .                                                                                                         (43)  
To increase the order of convergence, the relation 2  2  2  2 must hold for   0,1, … ,  and it implies that  
and . So the results (40) is obtained from (43) for all ∈ 0,1.   
5. Numerical Results  
In this section, we use Example 1 in [24] with known solution to verify the theoretical results. In 
addition, in Example 2 we solve Troesch’s problem to exhibit the efficiency of the IDeC method for   10 
by comparing the results in [6], [23] .   
Example 1.  
sin  sin    3 sin   cos 
,   sin   ,  
    0,  
1   
with the exact solution   sin  .   
Example 2. The Troesch’s problem is defined by  
 sinh   
0  0,  1  1  
The numerical results for Example 1 is given in Table 1. In the tables, the data’s about the IDeC iterates 
0,1, … ,  are given and   0 denotes the results of implicit trapezoidal method. To demonstrate the 
accuracy of the numerical solution , we calculate the order of maximum error which is defined by   
log  /// log 2 and 2  1 represents the degree of the B-spline polynomials. We use two different step sizes  
and /2 respectively and investigate the corresponding errors , / and their observed orders for various 
IDeC steps. The results of these experiments indicate the increasing order of convergence of IDeC steps 
and observed orders given in the tables well confirm the theoretical results. In [24], maximum 
convergence order is  for Example 1. However, in our results we obtain  . And also, the efficiency of 
the IDeC method is illustrated for transformed Troesch’s problem by   tanh /4 which is known as an 
inherently unstable two-point boundary value problem. In Table 2, we present the errors of the solution 
to transformed Troesch’s problem with the IDeC steps by comparing the accurate results available in 
[23] and [6] for   10. In Table 3, the solutions of transformed Troesch’s problem and the last accurate 
results in [23] for   30, 50 are given with the same step size.  

1  sin  
1  

, 
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It is seen from Table 3 that both results are almost same. However, our method is more effective since 
[23] uses polynomials of degree 30, 50 respectively, but our results obtained using polynomials degree 
of 5.   
In Table 4, the observed orders are given to emphasize the increasing order of convergence of IDeC 
steps for   30,50 using the B-spline polynomials of degree5. The orders are obtained by,   
log |  /// /|/ log 2, 
where  , /, / are approximate solutions corresponding to the different step sizes , /2, /4 respectively. 
Table 1: Maximum error moduli and observed orders for Example 1  
  

2m+1   h   j=0  j=1 j=2 j=3  
  
3   

1/32 
1/64  

 1.398(-03) 
3.503(-04)   

8.148(-06) 
5.710(-07)     

  
  

 1/128   8.765(-05)   3.638(-08)       
Observed 
orders  

   1.99614   3.83488       

    1.99904 3.97249    
  
5   

1/32 
1/64  

 1.398(-03) 
3.503(-04)   

1.682(-05) 
1.032(-06)   

3.447(-07) 
6.819(-09)   

  
  

 1/128   8.765(-05)   6.482(-08)   1.0989(-10)     
Observed 
orders  

   1.99614 4.02675 5.65961   

    1.99904   4.02675   5.95551     
  
7   

1/32  
1/64  

 1.398(-03)  
3.503(-04)   

1.562(-05)  
1.037(-06)   

9.401(-07)  
6.726(-09)   

2.323(-08)   
1.2162(-10)   

 1/128  8.765(-05) 6.489(-08) 1.111(-10) 4.668(-13)   
     1.99614 3.91347 7.12685 7.57803   
     1.99904   3.99846   5.91966   8.02538   
   

Table 2: 
Errors fo 

  
  
  
  
  
  
  
  
r Troesch’s 
problem 
with  
  λ= 10   

 

x  j=0  j=1  j=2  j=3  Chang[6]  Temimi[23]  
0.1   3.041(-

07)   
2.688(-10)   6.281(-11)   6.247(-11)   5.821(-

11)   
6.248(-11)   

0.2   8.566(-
07)   

4.846(-10) 1.928(-10) 1.919(-10) 1.794(-
10)   

1.919(-10) 

0.3   2.086(-
06)   

3.349(-10)   5.170(-10)   5.158(-10)   4.854(-
10)   

5.157(-10)   
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0.4   4.881(-
06)   

1.353(-09)   1.349(-09)   1.349(-09)   1.281(-
09)   

1.349(-09)   

0.5   1.106(-
05)   

7.924(-09) 3.303(-09) 3.312(-09) 3.171(-
09)   

3.312(-09) 

0.6   2.409(-
05)   

2.661(-08)   6.472(-09)   6.517(-09)   6.236(-
09)   

6.517(-09)   

0.7   4.924(-
05)   

6.448(-08)   2.685(-09)   2.839(-09)   2.312(-
09)   

2.833(-09)   

0.8   9.068(-
05)   

1.511(-07) 6.585(-10) 2.373(-10) 1.121(-
09)   

2.356(-10) 

0.9   1.394(-
04)   

2.288(-07)   3.279(-09)   2.389(-09)   3.567(-
09)   

2.386(-09)   

 
Table 3: Solutions for Troesch’s problem with λ=30, 50  
  

  λ=30    λ=50    
x  j=2  Temimi[23]  j=2  Temimi[23]  
0.1   2.499825044(-13)   2.498427550(-

13)   
2.289910897(-
21)   

2.168089718(-
21)   

0.2   5.033478719(-12) 5.031718066(-12) 3.398683397(-
19) 

3.269919297(-
19) 

0.3   1.011007423(-10)   1.010808107(-10)   5.044093407(-
17)   

4.917006047(-
17)   

0.4   2.030662723(-09)   2.030470452(-
09)   

7.486098374(-
15)   

7.372216233(-
15)   

0.5   4.078695111((-08)   4.078557034(-
08) 

1.111035509(-12) 1.102228564(-
12) 

0.6   8.192278125(-07)   8.192233710(-07)   1.648922897(-
10)   

1.643649842(-
10)   

0.7   1.645463056(-05)   1.645463961(-05)   2.447218563(-
08)   

2.445464917(-
08)   

0.8   3.305007649(-04) 3.304990272(-
04) 

3.631994383(-
06) 

3.632153512(-
06) 

0.9   6.643764763(-03)   6.643689371(-
03)   

5.390439175(-
04)   

5.389856648(-
04)   

0.95   3.025969663(-02)   3.02593407(-02)   6.581608721(-
03)   

6.580132361(-
03)   

0.97   5.753258144(-02) 5.75318891(-02) 1.815582947(-02) 1.815179410(-
02) 

0.98   8.222382385(-02)   8.22231682(-02)   3.087747331(-02)   3.087419365(-
02)   

0.99   1.269719232(-01))   1.26969423(-02)   5.627316454(-
02)   

5.625810248(-
02)   

 
Table 4: The orders for λ=30, 50 with degree of 5  
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λ  j=0 j=1 j=2 
30  1.94194 3.95678 5.54841 
40  1.85135 3.86983 5.68889 
50  1.69808  3.71666  5.75247  

  
Conclusion   
We give a numerical treatment for a class of nonlinear boundary value problems by iterated defect 
correction method (IDeC) based on the implicit trapezoid method using B-spline piecewise 
polynomials. We don’t need to solve the piecewise neighboring problem since the derivative properties 
and the advantage of the construction of B-spline polynomials. The maximum attainable order of the 
defect correction steps that depend on the degree of the polynomial are given in the theorem. We 
observed that the orders in the given tables show good agreement with the order sequence to be 
expected from theory. And we also overcome the difficulty in solving the Troesch’s problem for large 
values of  by increasing the order of convergence. It is expected that this approach can be used to the 
other unstable or strongly nonlinear two point boundary value problems.  
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