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Introduction   
Piecewise linear functions are useful in 
several different contexts, piecewise 
linear manifolds, computer science or 
convex analysis are examples. A 
definition of a piecewise linear function 
is the following, see [8]. Let C a closed 
convex domain in d , a function :C 

 is said to be piecewise linear if 
there is a finite family Q of closed 
domains such that C = Q and  is 
linear on every domain in Q . A linear 
function  on d which coincides with 

 on some Qi Q is said to be a 
component of . In this paper is 
considered a more general class of 
piecewise linear functions. It is defined 
the set of maps SW(E m ,T) which are 
linear only on a subset of r vectors and 
components.    
Then an exponential function F is 
defined from linear spaces to the set 
SW(E m ,T). It is proved the uniqueness 
and existence of a function * as 
universal element for the function F . It 
is defined a r-subset wise linear skew 
symmetric  = ,   map 
and it is proved that this is completely 
determined by its values for  and on 
a basis of E . A r-determinant function 
is defined as a r-subset wise linear skew 

symmetric map  : E m  , where  
 is an arbitrary field of characteristic 0. Some properties of r-determinant maps are considered. It is 

defined the adjoint for a linear map L(E,F), where E and F are linear spaces, and the development 

 Abstract: This paper explores a broader class of piecewise 
linear functions, extending their applicability beyond 
conventional domains. Piecewise linear functions are 
typically defined on closed convex domains, but this work 
introduces a more versatile set of maps known as SW(E m 
,T). These maps are linear only on selected subsets of vectors 
and components, making them suitable for a wider range of 
applications. 
The paper establishes an exponential function, F, which 
maps linear spaces to the set SW(E m ,T). It rigorously proves 
the uniqueness and existence of a universal element, denoted 
as *, within this framework. Furthermore, the paper 
introduces r-subset wise linear skew symmetric maps 
denoted as Φ = ∑ λμνϕ, demonstrating that they can be fully 
characterized by their values for λμν and a basis of E. 
The concept of an r-determinant function is introduced, 
defined as an r-subset wise linear skew symmetric map Φ: E 
m → Γ, with Γ being an arbitrary field of characteristic 0. 
The paper delves into various properties of r-determinant 
maps, shedding light on their characteristics and utility. 
Additionally, the paper explores the adjoint of a linear map 
ψ ∈ L(E,F), where E and F represent linear spaces. It also 
discusses the development of an r-determinant function 
using r-cofactors. 
Furthermore, this work defines extensions of differential 
forms through r-subset wise skew symmetric maps, paving 
the way for generalized differential forms. The paper 
investigates the basis and spaces of these generalized 
differential forms. 
Keywords: piecewise linear functions, SW(E m ,T), 
exponential function, r-subset wise linear skew symmetric 
maps, r-determinant function, adjoint, differential forms, 
generalized differential forms.   
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of a r-determinant function by r- cofactors. Extensions of differential forms are defined by r-subset wise 
skew symmetric maps. Basis and spaces of generalized differential forms are studied.   
2. R-Subset wise Linear Mappings  
Some properties of linear functions are extended to mappings which are linear only on subsets of r 
variables.  Denotes an arbitrarily chosen field such thatchar  = 0 .   
The multindex I rn of lenghtr is defined by    
I rn ={(i1, ,ir ): 1  i1 < i2 < < ir  n}  
Besides, for a fixed natural k  
    
(I rn )k = {(i1, ,ip , ,ir ):1  i1 < < ip = k <  ir  n, where1  k  n} 
  
for the indices j1, , jk Ikn  
  (I rn ) j , , j = {(i1, ,ip , ,ip , ,ir ) :  
1 k 1 k 
  1  i1 < < ip = j1 < < ip = jk <  ir  n}  
1 k 
Let {e } be a basis of an n-dimensional vector space E and let x  = n=1x e  be vectors of E , n 1.   
Definition 2.1Let L(E r ,T) be the space of linear mappings of Er into the vector space T . Consider a 
mapping    

 :   E m T 
 

 :   (x1, ,xm ) (x 1e , ,x r e ) 1  r  n,1  r  m,   
   ,      

Where the sum is over every system of indices = 1, , r Irm ,  = 1, , r Irn . If n=m then r < 

n = m . The sum (x i e   x i e  ) is denoted in short by x i e , and : E r T is an r-linear 
mapping.  
1 1 r r 
Then  is said to be r-linear with respect to the r-subsets of vectors and components, that is, an r-
subsetwise linear mapping. The linear mappings  are the components of .   
  
Example 2.1 The function : 1 2  defined by  
  
  (x, y) = 2x 3y is an 1-subsetwise linear function.  

  

  
Example 2.2 The map  :( 2 )3  2 2 defined by   
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x 
[(x11, x21),(x12, x22 ),(x13, 

x23)]= 12 x1121 
 

x12 
 13 x1
1 

 
x21 

x22   

x13 
 23 x1
2 

 
x22 

x23     

x13  
 x23  

  

is an 2-subsetwise linear map.    
Example 2.3  Let f1, , fr be a linearly independent set of the space L(E r ,T) , a r-subsetwise linear 
map is defined by   

(x1, ,xm ) = ( f1(x 1e )  f2 (x 2 e ) fr 
(x r e )) 
  ,  

 
  

Theorem 2.1  An r-subsetwise linear mapping , with r < m, is not linear Proof. For any r-subsetwise 
linear mapping , r < m,   

(x1, ,xi yi, ,xm)= (x 1e , ,x i e , ,x  r e ) 
(x 1e , ,y i e , ,x r e )  

,  ,  
       (x1, ,xi , ,xm ) (x1, , yi , , xm ) 
In the first sum on the right side = 1, ,i, , r I rm . Unlike, in the second sum  

= 1, ,i, , r (Irm   )i , so this sum cannot be (x1, , yi , ,xm   ) .  □  
 As a special case, if r=m then  is linear.    
 If t :T  H is linear and  is r-swlin (subsetwise linear) map, then 
  t  = t( ) = t  
and t  is a r-swlin map.  
By the set SW(E m ,T) of the r-swlin maps, the following exponential functor F , from linear spaces to 
sets, is defined by    
F(T) = SW(E m ,T) for any linear space T   

F(t): F(T)  F(H) 
 for any linear  t :T  H 

  F(t):Φ t Φ  
Theorem 2.2  For any r-swlin mapping  : Em  H there exists a unique linear mapping f : E E 

 H such that  
  f (x1  xm ) = (x1, ,xm )  
That is, the mapping : E m T is an universal element for the functor F .    
Proof. The proof generalizes to swlin maps the classical proof of universality of the tensor product, see 
[4], [6].   
 Uniqueness. Suppose that : E m T and ~  : Em T~  are universal elements for the functor F , then, 
there exist linear maps  
~ ~ 
f :T T and g :T T 
suchthat  

  
  
thatis  
  

f (x1 xm ) = x1 
~ ~  xm 

and ~ g(x1 ~  xm ) = x1 
x m  

  
gf (x1  xm ) = x1  
x m 

and ~ fg(x1 ~  xm ) = x1 
~ ~  x m  
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~ 
by the universality of  and  it follows, respectively    
  1T = g f and 1 T~ = f g  
thus f and g are inverse linear isomorphisms.   
Existence: Consider the free vector space C(E r ) generated by the space Er . Denote by N(E r ) the 
subspace of  
C(E r ) spanned by the vectors   
  
(x 1e , , 1 y1 2 y2, , x r e ) 1(x  1e , , y1, , x  r e ) 
  2 (x  1e , y2 , , x  r e )     
  
for = 1, , r Irm ,  = 1, , r Irn , i  and x r e , y1, y2 Er .   
  
 Set S = C(E r )/N(E r ) and let :C(E r )  S be the canonical projection. Define the map   
    

  
  

: 
 

: 
 

E m  S 
(x1, ,xm ) 

(x 1e , ,x r 
e  ) 

,  
  

Since  is a homomorphism, it follows that  is an r-swlin map.   
 If z S , then it is a finite sum   
  
  z = ( (x 1e , ,x  r e ))   

 ,  
=  (x1 xm )  
     
 so z S , z is spanned by the products x1  xm and Im  = S .   
  
 Moreover let :Er  H be a r-linear map. Since C(E r ) is a free vector space, there exists an unique 
linear map g such that the following diagram commutes  

   
where j is the insertion of Er in C(E r ) . So  
  
  g(x  1e , ,x r e ) = (x 1e , ,x  r e )   
  
If  
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z = (x  1e , , 1 y1 2 y2 , , x r e ) 1(x 1e , , y1, ,x  r e ) 2 
(x 1e , y2, ,x r e )  
  
Is a generator of N(E r ) , then   
  
g(z) = (z) = (x  1e , , 1y1 2 y2, ,x re ) 1 (x 1e , , y1, ,x  re ) 

2 (x 1e , y2, ,x r e )  
= 0  
  
 then N(E r )  Kerg . For the principal theorem on factor spaces, see [5], there exists an unique linear 
map  
f such that the following diagram commutes  
  

   
that is,  is an universal element. So  
    
( f )(x1, ,xm ) = f ( (x 1e , , x  r e )) 

,    
= f (x 1e , ,x  r e ) 
  ,    
= g(x 1e , ,x  r e ) 
  ,    
= (x 1e , ,x  r e ) 
  ,    
= (x1, ,xm )   
  
                  
Example 2.4  Consider the 2-swlin function  defined by   
  

   
 □  

 : ( 2 )3  
   12 13 23 

   : (x1, x2 , x3 )  (x1, x2 )  (x1, x3)  (x2, x3) 
  

12 
, 13, 23 

 
  

where the bilinear function ( , ), on the right side, is the inner product in 2 . By the theorem 2.2, 
the map :( 2 )3  2 2 2 is universal, so an unique linear function f : 2 2 2     
exists such that f (x1 x2 x3) = (x1,x2 ,x3 ). Since 2 2 2 is free, the function f is determined 
by its values f (x1  x2  x3) on the free generators x1 x2 x3 .   
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Corollary 2.1  For any r-swlin map  : E m T  
  

(x1, ,xm ) = (x 1e   x  r e ) 
  ,    
  

    
Proof. Since (x 1e , ,x r e ) = x 1e   x r e  , by the theorem 2.2   
  

(x1, ,xm ) = ( f )((x1, ,xm ) = f ( (x 1e   x  r e ) 
  ,    
  
  
Example 2.5  Let  :( n )n T be a 2-swlin map. The tensor product : n n  M n n is defined 
by xi  xi = xi x'i , xi   n , see [4], then :( n )n  n n  is given by   
1 2 1 2 
  
x1 xn =  (i1,i2 ) xi1  x i2 
(i ,i ) I n 
  1 2 2   

  (i1,i2) x1i x1i  (i1,i2 )x1i xni   
 1 2 1 2 
 (i1,i2 ) I2n (i1,i2) I2n  

=      
  (i1, i2) I n (i1,i2) xni1 x1i2 (i1, i2) I2n (i1,i2) xni1 xni2      

 2 
  
3.{r, }- determinant  
  
 If   is  a  permutation, Sr ,  then  the  mapping : r  F  is 
 defined  by  

(x1, ,xr ) = (x  , ,x  ) . More generally   
1 r 
Definition 3.1  Let (x1, ,xm ) be an r-swlin map, for any permutation Sr , the mapping  : 
Em T , is  
defined by   
  (x1, ,xm ) = (x 1e , ,x r e ) = 

(x ( 1)e , ,x ( r ) e )  
,  ,   

Definition 3.2  An r-swlin map (x1, ,xm ) is said skewsymmetric if for any Sr is  =  
where  

 =1(  = 1) for any even (odd) permutation .   
  
Theorem 3.1  An r-swlin map  =  is skewsymmetric if and only if  is skewsymmetric. 
Proof.Suppose  
skewsymmetric, then  

 = (x 1e , ,x r e ) = (x 1e , ,x  r e ) =  
  ,  ,    
Conversely,  =  implies 
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=  
  ,  ,   
so ,  ( ) = 0 for all x  1e , ,x r e , then = .  □  
  
Theorem 3.2  Every r-swlin map (x1, ,xm ) determines an r-swlinskewsymmetric map  , given 
by 

 =  = (x 1e , , x  r e ) 
   ,     
where the second sum on right side is over all permutations Sr .  
Proof. For any Sr  
   = ( ) = ( ) = ( ) = .  

,   ,   ,                      
 □  
Theorem 3.3  Let  = ,  : E m  F be an r-swlinskewsymmetric map, then  is 
completely determined by its  
values on a basis of E and by the constants .   
  
i n i i 
Proof. Let {e } be a basis of E . Let x = =1x e , i =1, ,m be vectors in E and X = (x ) , then   
n n 

(x1, , xm ) = ( x 1e , , x me ) 
=1 =1   

n n 
= (( x 1e ) , ,( x r e ) ) Irn, Irm 

,  =1 =1 
= (  x 1 x  r (e  , ,e  )) Sr 

 
,  =  , ,    1 r 1 1 

1 r 
=  | X  | (e  , ,e  ) 
1 r 

,   
where X  is the square submatrix of X determined by rows indexed by  and columns indexed by .      
Example 3.1  Let  :( 3)3  3 be a 2-swlin skewsymmetric map defined by   
  

 x x  
 ( x , x , x ) =    j1 , j2  i1 , j1 i1 , j2  

1 2 3 ( i1 ,i2 ), 1 2 2 i1 ,i2    x i , j x i , j     
( j , j )  I 3  2 1 2 2 
  
  
3 3 where xi = k=1xk,iek  . Then  
  
j , j 

(x1, x2 , x3 ) =  i11,i22 (xi1 j1ei1  xi2 j1ei2 , xi1 j2 ei1  xi2 j2 ei2   ) 
  (i1,i2 ),( j1, j2 ) I23     
  

 j   , j2 xi1, j1 x i1,   j2 (ei ,ei ) 
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= i1,i 
1 2 x x 1 2 
(i ,i ),( j , j ) I3 i2, j1 i2,   j2 
    1 2 1 2 2  
Definition 3.3  Let {e } be a basis of E , then an r-swlinskewsymmetric map E (x1, , xm ) :E m  
such that (e  , ,e  ) = 1, I r n   , is said an r-determinant function.   
1 r  
The scalar detr, X = ,  | X  | will be said the (r, ) -determinant of X = (x i ) , relative to 
the basis  
{e }. If  =| X  | we denote detr X =| X |r = ,  | X  |2 , see [2].  
Example 3.2 In order to obtain a non-trivial example of r-determinant function, consider a 2-swlin 
function  = ,   defined by   

(x1, ,xm ) = e 1 ,x 1e e r ,x  r e  
 ,   thatis  
 (x  1e , ,x r e ) = e 1 ,x 1e e r ,x  r e     
where {e },{e } are a pair of dual bases in E and E  = L(E) ={f :f : E , f linear} respectively,  
with dimE = dimE   r . The bilinear function ,  is non-degenerate and it is defined by   
  

    
  e i ,x i e  = e i (x i e )   
  
then (x1, ,xm ) = e 1 ,x 1e  e r ,x  r e   
1 1 r r 
     

 
= x 11 x  r r 
       
The set of the r-swlin maps is denoted by SW(E m ,T). The exponential functor F , from linear spaces to  
sets, is defined by   
  
F(T) = SW(E m ,T) for any linear space T 
    

F(t): F(T)  F(H) 
 for any linear t :T  H 

  F(t):  t   
 The following proposition states the universality of the r-determinant function. 
Theorem 3.4  Let E = , : E m  be an r-determinant function in E , then for any r-
swlinskewsymmetric  
mapping  =  : E m  F , there is an unique vector f F such that   

(x1, , xm ) = ( E (x1, , xm )( f ) =  | X  | f  I rm , Irn , xi E 
  ,  
where f  are the components of the vector   
  f = ( (e 1 , ,e 1r ), , (e    nr , ,e  nr    ))  

1 
1   r 
n  

i n and  are the  r   elements of I r .   
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Proof. Let {ei}, i =1, ,n be a basis of E such that   
  

E (x1, , xm ) =  | X  | (e  , ,e  ) =  | X  | 
1 r 
  ,  ,    
 that is , (e  , ,e  ) =1.  
1 r  
Then, for any r-swlin skew symmetric map   
  

(x1, , xm ) =  | X  |  = (  E (x1, , xm ))( f ) 
  ,   itfollows 

(e  , ,e  ) = (e  , ,e  ) (e  , ,e  ) =1 (e  , ,e  ) 
  1 r 1 r 1 r 1 r  
 so  and  have the same values on the basis {e } and by theorem 3.3 it follows  =  . □  
  
If E and 'E are two r-determinant functions in E , then  E ' E , ,  , is a r-determinant 
function too. 
 Let F be an r-determinant function in F and let : E  F be a linear mapping of vector spaces, where  
dimE = n, dimF = t , then  : Em  , defined by    

(x1, ,xm ) =  F ( x1, , xm ) = F (( x 1 ) , ,( x  r ) ) 
,   

is an r-determinant function in E , where F : F r     is an r-linear mapping on F , Irm , I rt .    
By theorem 3.4,  =  F ( f ) = , ,  | X  |   f  for an unique vector f = ( f ).  
 Let 'F be another nonnullswilin skew symmetric map, then  
  'F =  F (g) =  | X  | g   

, ,  
and   

'  = (g) = (  F ( f ))(g) =  | X  | f g  = ' F ( f ) 
  , ,    
so the vector f does not depend on the choise of F and it is determined by the map , then the notation 
f = det  .  
Example 3.3  Let  and A  be a linear map and its matrix respectively, defined by   

1 0  
: 2  3   

 A  = 0 1  
  :(x, y) (x, y,x  y)  1 1    
besides let  3 : ( 3)3  be a 2-determinant function and xi 2 , then   

  
 = 3 ( x1, x2, x3) = 12 ( x1, x2 ) 13 ( x1, x3) 23 ( x2 , x3 )   

2 2 2 2 2 2 
= 12 ( xi1 ei , xi2 ei ) 13 ( xi1 ei , xi3 ei ) 23 ( xi2 ei , xi3 ei )  
i=1 i=1 i=1 i=1 i=1 i=1 
= 12 | X 12 | ( e1, e2 ) 13 | X 13 | ( e1, e2 ) 23 | X 23 | ( e1, e2 )   
  
x x 
ij1i 1 j 
where| X |=. Since  
x2i x 2j 
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1 0 1 0 0 1 
( e1, e2 ) = ((1,0,1),(0,1,1)) = 12 

0 1 1 1 1 1 = 12 13 23 
then  

 = 12 | X 12 | det2, 13 | X 13 | det2, 23 | X 23 | det2,  = 3 (det2, )  
The expression for det  may be obtained immediately by the matrix A , see [2]    

1   0  
   1 01 00 1 

  det2, A  = det2, 0   1  = 12= 12 13 23  
 1   1  0 11 11 1 

Theorem 3.5  Let : E  F be a linear mapping and A  = ( ) its matrix relative to the bases 
{e },{f },  

 =1, ,n ,  =1, ,t . Let F = , F : F m  be an r-determinant function. If F ( f 1 

, , f r ) =1, then  
i)  

(x1, , xm ) = (  | X  || A  |) I rm , I rn , I r t 
,     

ii)  
(e1, ,en ) =  | A  | 

,    
where A  is the submatrix of A determined by rows indexed by  and columns indexed by , for  
= 1, , r I rn ,  = 1, , r I rt   . The vectors x1, ,xm , relative to the basis {e  }, are expressed by  
x  = n =1 x e , =1, ,m and X = (x ) .  
Proof. i)   
n n 

(x1, ,xm ) = F ( x1, , xm ) = F ( x 1 e , , x m e ) 
=1 =1 

n t n t 
=  F ( x 1 1  f , , x m m f ) 

=1 =1 =1 =1 t n t n 
=  F ( ( x 1 ) f , , ( x m ) f ) 

=1 =1 =1 =1 n n 
= F ((( x 1 ) f ), ,(( x r ) f ) I rt , Irm 

,  =1 =1 
n  n  
= (  ( x 1 1 ) ( x r r )) F ( f 1 , , f  r ) 
  ,  = 1, , r =1 =1  

Sr   , by  
n  n  
   ( x  1 1 ) ( x r r ) =  | X  || A  | it follows i).   

=  , ,  =1 =1  1 r 
  
ii) It is a special case of i) for X = In .   
  
The scalar detr,  = ,  | A  | will be called the (r, ) -determinant of , relative to the 
bases  
{e },{ f }. If  =| A  | , then ,  | A  |2 will be denoted by detr  or |  |r      
 □ 

13   23    

13   23   
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Theorem 3.6  Let :E  F and :F  G be linear mappings of vector spaces. Let F be a 
determinant function in  
F . If x1, ,xm are vectors in E , then   

(x1, , xm ) = (x1, , xm )      
Proof.  

(x1, , xm ) = G ( (x1, , xm )) = ( (x1, , xm )) = (x1, , xm ) 
4. The (t,k)-forms  
Let np be the tangent space of n at the point p and let ( np )  be the dual space. Let k ( np )  be 
the linear space of the k-linear alternating maps :( np )k  , then denote by kt ( np )  , with k  
t  n , the set of all k-linear alternating maps : ( np )t . The set kt ( np )  , by the usual 
operations of functions, is a linear  
space.  If 1, , t belong to ( np ) , then an element 1 t kt ( np )  is 
obtained by setting   

1(v1) 
( 1 t )(v1, ,vk ) = detk, i (v j ) =  

(v )   t 1 
  
where i =1, ,t , j =1, ,k and vj n .   
  
 Observe that 1 t is k-linear and alternate.  
  

 
 
 

1(vk 
) 

 
t (vk ) 

  

Example 4.1 When 1, 2 , 3 belong to ( 3p ) , an element 1 2 3 23( 3p )  is obtained 
by the 2-swlin skewsymmetric map   
  

1(v1) 
( 1 2 3)(v1,v2 ) = det2, i (v j ) = 2 (v1) 

 (v ) 
  3 1 
(i1,i2 ) I23, i i  
1 2   

1(v2 ) 
2 (v2 ) i  i i ii12 

((vv11)) 
= 

3(v2 ) i1< 2 1 
2 

i (v2 

) 
1 

i (v2   

) 
2 

 and 1 2 3 is a bilinear alternating map on the vectors v1,v2 .   
 Let xi : n  be the function which assigns to each point of n its ith -coordinate. Then (dxi ) p is a 
linear map in ( n )  and the set {(dxi ) p;i =1, ,n} is the dual basis of the standard {(ei ) p}. The element  
(dxi 1 ) p  (dxit ) p is denoted by (dxi1 dxit ) p and belongs to kt ( np   )  .  
Theorem 4.1 The set {(dxi 1 dxit ) p}, i1, ,it Itn is a basis for kt ( np )  . Proof. the elements 
of {(dxi 1  dxit ) p} are linearly independent. In fact, suppose    
i i 

 ai1, ,it dx 1 dx t = 0  
i1, ,it It n  
then, for any (ej , ,ej ) , with j1, , jk Ikn , it follows   
1 k 
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 ai1, ,it dxi 1 dxi t (ej1   , ,ejk )  
,it It n i1  

i i 
dx 1e j dx 1e j 
1 k 
=  ai1, ,it  
i1, ,it It ndxit e j1 dxi t e jk 

  
  

i 
j1 

1 
 

=  a i1, ,it ij1 t 
i , ,i  In 
1 t t 

 
 
 

i 
j 1 k 
 

i 
jt k 

  

  

= r1, ,rt 
ar1, ,rt 
r , ,r 
1 t 

 
r1, ,rt (Itn   )   
j1, , jk 
  

  = 0    
n  

 Without  loss  of  generality,  suppose r , ,r  all  equal,  then  the  k   
equations  
1 t 

 
n n 

r , ,r ar1, ,rt = 0, r1, ,rt (It ) j1, , jk , j1, , jk I   k , are a linear omogeneous full rank system, so it 
has only the  
1 t trivial solution. That is ai , ,i = 0.   
1 t 
 The set {(dxi 1  dxit ) p} spans kt ( np )  , in other words any kt ( np )  may be written     

=  ai1, ,it dxi 1 dxit   i1, ,it It n  
i1, ,it It n 
 in fact, if  
   =  (ei1 , ,eit   )dxi1 dxi t  
i1, ,it It n 
then (ei , ,ei ) = (ei , ,ei ) for all i1, ,it Itn , so  = . Setting (ei , ,ei ) = ai , ,i , it  
1 t 1 t 1 t 1 t 
follows the expression of .                     □  
i i 
 The above proposition generalizes the known theorem about the basis {dx 1 dx k } of the space  

k ( np )    , see [1].  
Theorem 4.2 The linear spaces kt ( np )  and k ( np )  coincide.   
Proof. Let = ( 1 t )(v1, ,vk ) kt ( np ) , then 
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=  
i1, ,ik 

i , ,i In 
1 k k 

i (v1) 
1 

 
ik 

(v1) 

 
 
 

i (vk ) 
1 

 
= 

ik (vk ) 

 i , ,i ( 1 k 
)(v1, ,vk ) 
1 k 
i1, ,ik Ikn   

  
  
 so k ( np )  . Conversely, let 0 be the null function in ( np ) , then any k ( np )  may be 
written  
as   

 = ( 1 k )(v1, ,vk ) = ( 1 k 0 0)(v1, ,vk ) so kt ( np ) .        
 If kt ( np )  , then  may be decomposed by elements of kt  j ( np ) , where k  t  j  t , 
in fact  
Theorem 4.3 Let = ( 1 t )(v1, ,vk ) kt ( np ) , then  

 i , ,i 
  = 1 t  j ( i i )(v1, ,vk )  

 
(t k) (t k  j 1) It 1 t  j 
t  j Proof.  
  

=  (it1, ,k it )1 Itt  1 ( i1  it 1 )(v1, ,vk )  

 
=     

 i , ,i 
= 1 t  j ( i i )(v1, ,vk ) (t k) (t k  j 1) It 1 t  j 

 
t  j 

 t  
 indeed  is the sum of  k   determinants, the last right side has the same number   
t (t  j  2) t  j t  j 1  

 
  (t k) (t k  j 1)    k  t  j              
         □  
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