

Journal of Statistical and Mathematical Sciences ISSN 3065-100X

Volume 13 Issue 2 April-June 2025 Impact Factor: 8.99

Enquiry: contact@continentalpub.online

Published by Continental Publication http://continentalpub.online/index.php/jsms

EXTENDING THE SCOPE OF PIECEWISE LINEAR FUNCTION **TECHNIQUES**

Dr. Lorenzo Matteo Bianchi

Department Disag, University Of Siena, Piazza S. Francesco, 53100 Siena, Italy

Abstract: This paper explores a broader class of piecewise linear functions, extending their applicability beyond conventional domains. Piecewise linear functions are typically defined on closed convex domains, but this work introduces a more versatile set of maps known as SW(E m ,T). These maps are linear only on selected subsets of vectors and components, making them suitable for a wider range of applications.

The paper establishes an exponential function, F, which maps linear spaces to the set SW(Em,T). It rigorously proves the uniqueness and existence of a universal element, denoted as *, within this framework. Furthermore, the paper introduces r-subset wise linear skew symmetric maps denoted as $\Phi = \sum \lambda \mu \nu \phi$, demonstrating that they can be fully characterized by their values for $\lambda \mu \nu$ and a basis of E.

The concept of an r-determinant function is introduced, defined as an r-subset wise linear skew symmetric map Φ : E $m \to \Gamma$, with Γ being an arbitrary field of characteristic o. The paper delves into various properties of r-determinant maps, shedding light on their characteristics and utility.

Additionally, the paper explores the adjoint of a linear map $\psi \in L(E,F)$, where E and F represent linear spaces. It also discusses the development of an r-determinant function using r-cofactors.

Furthermore, this work defines extensions of differential forms through r-subset wise skew symmetric maps, paving the way for generalized differential forms. The paper investigates the basis and spaces of these generalized differential forms.

Keywords: piecewise linear functions, SW(E m, T), exponential function, r-subset wise linear skew symmetric maps, r-determinant function, adjoint, differential forms, generalized differential forms.

symmetric map $\Box : E^m \Box \Box$, where

□ is an arbitrary field of characteristic o. Some properties of r-determinant maps are considered. It is defined the adjoint for a linear map $\Box \Box L(E,F)$, where E and F are linear spaces, and the development

Copyright: © 2025 Continental Publication

Introduction

Piecewise linear functions are useful in several different contexts, piecewise linear manifolds, computer science or convex analysis are examples. definition of a piecewise linear function is the following, see [8]. Let C a closed convex domain in \square^d , a function $\square:C$ \square is said to be piecewise linear if there is a finite family Q of closed domains such that $C = \square O$ and \square is linear on every domain in Q. A linear function \square on \square^d which coincides with \square on some $Q_i \square Q$ is said to be a component of \square . In this paper is considered a more general class of piecewise linear functions. It is defined the set of maps $SW(E^m,T)$ which are linear only on a subset of r vectors and components.

Then an exponential function F is defined from linear spaces to the set $SW(E^m,T)$. It is proved the uniqueness and existence of a function * as universal element for the function F. It is defined a r-subset wise linear skew symmetric $\square = \square \square, \square \square \square \square \square \square$ map and it is proved that this is completely determined by its values for $\Box\Box\Box$ and on a basis of E. A r-determinant function is defined as a r-subset wise linear skew

Vol. 13 No. 2 | Imp. Factor: 8.99

DOI:https://doi.org/10.5281/zenodo.15912025

of a r-determinant function by r- cofactors. Extensions of differential forms are defined by r-subset wise skew symmetric maps. Basis and spaces of generalized differential forms are studied.

2. R-Subset wise Linear Mappings

Some properties of linear functions are extended to mappings which are linear only on subsets of r variables. \square Denotes an arbitrarily chosen field such that $char \square = 0$.

The multindex I_r^n of lenght is defined by

 $I_{r^n} = \{(i_1, \square, i_r): 1 \square i_1 < i_2 < \square < i_r \square n\}$

Besides, for a fixed natural k

 $(I_{r^n})_k = \{(i_1, \square, i_p, \square, i_r): 1 \square i_1 < \square < i_p = k < \square \square i_r \square n, \text{ where } 1 \square k \square n\}$

for the indices $j_1, \square, j_k \square I_{k^n}$

 $(I_{r^n})_{j,\square,j} = \{(i_1,\square,i_p,\square,i_p,\square,i_r):$

 $1 \quad k \quad 1 \quad k$

 $1 \square i_1 < \square < i_p = j_1 < \square < i_p = j_k < \square \square i_r \square n$

1 k

Let $\{e_{\square}\}$ be a basis of an n-dimensional vector space E and let $x^{\square} = \square \square^n = 1^x \square^{\square e_{\square}}$ be vectors of E, $n \square 1$. **Definition 2.1***Let* $L(E^r, T)$ *be the space of linear mappings of* E^r *into the vector space* T . *Consider a mapping*

 \square : E^m \square T

 $\square \square : (x_1,\square,x_m) \square \square \square \square \square \square (x_{\square} \square^1 e_{\square},\square,x_{\square} \square^r e_{\square}) \ 1 \square \ r \square \ n,1 \square \ r \square \ m, \square_{\square} \square \square$

Where the sum is over every system of indices $\Box = \Box_1, \Box, \Box_r \Box I_r^m$, $\Box = \Box_1, \Box, \Box_r \Box I_r^n$. If n = m then r < n = m. The sum $(x \Box^{\Box i} e \Box \Box \Box \Box x \Box^{\Box i} e \Box)$ is denoted in short by $x \Box^{\Box i} e \Box$, and $\Box : E^r \Box T$ is an r-linear mapping.

 $1 \quad 1 \quad r \quad r$

Then \square is said to be r-linear with respect to the r-subsets of vectors and components, that is, an r-subsetwise linear mapping. The linear mappings \square are the components of \square .

Example 2.1 The function $\Box : \Box^{1\Box 2} \Box \Box$ defined by

 $\square(x, y) = 2x \square 3y$ is an 1-subsetwise linear function.

Graph of the function Φ . (Obtained by Mathematica).

Example 2.2 The map $\square : (\square^2)^3 \square \square^{2\square 2}$ defined by

Journal of Statistical and Mathematical Sciences Vol. 13 No. 2 | Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15912025 $\Box x$ $\Box x_{13}$ $\square \chi_{13} \square$ x12 $\Box \lceil (x_{11}, x_{21}), (x_{12}, x_{21}) \rceil$ $13\Box x1$ $23\Box x1\Box\Box x_{23}\Box$ χ 22 $),(x_{13},$ $[x23] = \square 12 \square \square x1121$ $\square \square x21$ $\square \square x22$ $\chi_{22} \square \square$ $\chi_{23} \square \square$ is an 2-subsetwise linear map. **Example 2.3** Let f_1, \square, f_r be a linearly independent set of the space $L(E^r, T)$, a r-subsetwise linear map is defined by $\Box(x_1,\Box,x_m) = \Box\Box\Box\Box(f_1(x\Box\Box 1e\Box)\Box f_2(x\Box\Box 2e\Box)\Box\Box f_r\Box\Box\Box\Box\Box$ $(x\Box\Box r e\Box)$ \Box , \Box **Theorem 2.1** An r-subsetwise linear mapping \square , with r < m, is not linear Proof. For any r-subsetwise linear mapping \Box , r < m, $\Box yi, \Box xm) = \Box \Box \Box \Box \Box (x \Box \Box 1e \Box, \Box x \Box i)$ $\Box(x_1,\Box,x_i)$ $e\Box,\Box,x\Box\Box$ $e\square$) $\square \square (x_1,\square,x_i,\square,x_m) \square \square (x_1,\square,y_i,\square,x_m)$ In the first sum on the right side $\square = \square_1, \square, i, \square, \square_r \square I_r^m$. Unlike, in the second sum $\square = \square_1, \square, i, \square, \square_r \square (I_{r^m})_i$, so this sum cannot be $\square (x_1, \square, y_i, \square, x_m)$. \square As a special case, if r=m then \square is linear. If $t:T \square H$ is linear and \square is r-swlin (subsetwise linear) map, then $t\Box = t(\Box\Box\Box\Box\Box) = \Box\Box\Box\Box\Box$ and $t\square$ is a r-swlin map. By the set $SW(E^m,T)$ of the r-swlin maps, the following exponential functor F, from linear spaces to sets, is defined by $F(T) = SW(E^m, T)$ for any linear space T $\Box F(t)$: $F(T) \Box F(H)$ for any linear $t:T \square H$ $\Box F(t):\Phi\Box\Box t\Box\Phi$ **Theorem 2.2** For any r-swlin mapping $\square : E^m \square H$ there exists a unique linear mapping $f : E \square \square \square E$ \square *H* such that $f(x_1 \square \square \square x_m) = \square(x_1, \square, x_m)$ That is, the mapping \square : $E^m \square T$ is an universal element for the functor F. *Proof.* The proof generalizes to swlin maps the classical proof of universality of the tensor product, see Uniqueness. Suppose that $\square: E^m \square T$ and $^{\sim}\square: E^m \square^{T^{\sim}}$ are universal elements for the functor F, then, there exist linear maps $f:T \square T$ and $g:T \square T$ suchthat $f(x_1 \square \square \square x_m) = x_1$ and $\sim q(x_1 \square \square \sim \square x_m) = x_1$ $\sim \square \square \sim \square xm$ $\Box\Box\Box x m$ thatis

 $\sim fg(x_1 \square \square \sim \square x_m) = x_1$

 $\sim \square \square \sim \square \times m$

Copyright: © 2025 Continental Publication

 χ_m

 $qf(x_1 \square \square \square x_m) = x_1 \square \square \square$ and

Vol. 13 No. 2 | Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15912025

by the universality of \square and \square it follows, respectively
$1T = g \square \square f$ and $1T \sim = f \square \square g$ thus f and g are inverse linear isomorphisms.
Existence: Consider the free vector space $C(E^r)$ generated by the space E^r . Denote by $N(E^r)$ the
subspace of
$C(E^r)$ spanned by the vectors
o(L') spanned by the vectors
$(x \square \square 1e \square, \square, \square 1 \ y1 \square \square 2 \ y2, \square, x \square \square r \ e \square) \square \square 1(x \square \square 1e \square, \square, y1, \square, x \square \square r \ e \square)$ $\square \square 2 (x \square \square 1e \square, \square y2, \square, x \square \square r \ e \square)$
for $\square = \square_1, \square, \square_r \square I_{r^m}, \square = \square_1, \square, \square_r \square I_{r^n}, \square_i \square \square$ and $x_{\square} \square^r e_{\square}, y_1, y_2 \square E^r$.
Set $S = C(E^r)/N(E^r)$ and let $\square: C(E^r) \square S$ be the canonical projection. Define the map
\square : $E^m \square S$
\square (x_1,\square,x_m)
$\square \square : \square \square \square \square \square (x \square \square 1e \square, \square, x \square \square r$
$\square\square$ $e\square$)
\Box,\Box
Cinco [] is a homomorphism it follows that [] is an a sydin man
Since \square is a homomorphism, it follows that \square is an r-swlin map. If $z\square S$, then it is a finite sum
II ZLIS, then it is a finite sum
$z = \square \square \square (\square \square \square \square \square (x \square \square 1e \square, \square, x \square \square r e \square)) \square$
$=\Box\Box\Box(x_1\Box\Box\Box x_m)\Box$
so $\Box z \Box S$, z is spanned by the products $x_1 \Box \Box \Box x_m$ and $I_m \Box = S$.
Moreover let $\Box: E^r \Box H$ be a r-linear map. Since $C(E^r)$ is a free vector space, there exists an unique
linear map g such that the following diagram commutes
$E^r \xrightarrow{j} C(E^r)$
· W
g

where j is the insertion of E^r in $C(E^{\,r})$. So

 $g(x \square \square 1e \square, \square, x \square \square r e \square) = \square(x \square \square 1e \square, \square, x \square \square r e \square)$

If

Journal of Statistical and Mathematical Sciences Vol. 13 No. 2 | Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15912025 $z = (x \square \square 1e \square, \square, \square 1 y 1 \square \square 2 y 2, \square, x \square \square r e \square) \square \square 1(x \square \square 1e \square, \square, y 1, \square, x \square \square r e \square) \square \square 2$ $(x \square \square 1e \square, \square y_2, \square, x \square \square r e \square)$ Is a generator of $N(E^r)$, then $q(z) = \Box(z) = \Box(x\Box\Box 1e\Box,\Box,\Box1y1\Box\Box 2y2,\Box,x\Box\Box re\Box)\Box\Box1\Box(x\Box\Box 1e\Box,\Box,y1,\Box,x\Box\Box re\Box)$ $\Box \Box 2\Box (x\Box \Box 1e\Box, \Box y_2, \Box, x\Box \Box r e\Box)$ = 0then $N(E^r)$ \square Kerg. For the principal theorem on factor spaces, see [5], there exists an unique linear map f such that the following diagram commutes that is, \square is an universal element. So $(f \square \square)(x_1,\square,x_m) = f(\square \square \square \square \square (x_{\square} \square 1e_{\square},\square,x_{\square} \square r e_{\square}))$ $= \Box \Box \Box \Box f \Box \Box (x \Box \Box 1e \Box, \Box, x \Box \Box r e \Box)$ $= \Box \Box \Box \Box q(x \Box \Box 1e \Box, \Box, x \Box \Box r e \Box)$ $= \Box \Box \Box \Box \Box (x \Box \Box 1e \Box, \Box, x \Box \Box r e \Box)$ \Box . \Box $= \Box(x_1,\Box,x_m)$ **Example 2.4** Consider the 2-swlin function \square defined by \square : $(\square^2)^3$ \Box 12 $,\Box$ 13, \Box 23 12 13 \square : (x_1, x_2, x_3) \square \square (x_1, x_2) \square \square (x_1, x_3) \square \square (x_2, x_3)

where the bilinear function (\Box, \Box) , on the right side, is the inner product in \Box^2 . By the theorem 2.2, the map $\Box: (\Box^2)^3 \Box \Box^2 \Box \Box^2 \Box \Box^2$ is universal, so an unique linear function $f: \Box^2 \Box \Box^2 \Box \Box^2 \Box \Box$ exists such that $f(x_1 \Box x_2 \Box x_3) = \Box(x_1, x_2, x_3)$. Since $\Box^2 \Box \Box^2 \Box \Box^2$ is free, the function f is determined by its values $f(x_1 \Box x_2 \Box x_3)$ on the free generators $x_1 \Box x_2 \Box x_3$.

Vol. 13 No. 2 | Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15912025

Corollary 2.1 For any r-swlin map $\square : E^m \square T$
$\Box(x_1,\Box,x_m) = \Box\Box\Box\Box(x\Box\Box 1e\Box\Box x\Box\Box r e\Box)$ \Box,\Box
\square
$\Box(x_1,\Box,x_m)=(f\Box\Box)((x_1,\Box,x_m)=f(\Box\Box\Box\Box(x_\Box\Box^1e_\Box\Box\Box a_\Box\Box^re_\Box))$
Example 2.5 Let $\square : (\square^n)^n \square T$ be a 2-swlin map. The tensor product $\square : \square^n \square \square^n \square M^{n\square n}$ is defined by $x_i \square x_i = x_i x_i'$, $x_i \square \square^n$, see [4], then $\square : (\square^n)^n \square \square^n \square \square \square^n$ is given by 1 2 1 2
$x1 \square \square \square xn = \square \square (i1,i2) xi1 \square x i2$ $(i,i) \square I^n$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3. $\{r,\Box\}$ - determinant
If \Box is a permutation, $\Box \Box S_r$, then the mapping $\Box \Box : \Box^r \Box F$ is defined by $\Box \Box (x_1, \Box, x_r) = \Box (x_\Box, \Box, x_\Box)$. More generally
Definition 3.1 Let $\square(x_1,\square,x_m)$ be an r-swlin map, for any permutation $\square\square S_r$, the mapping $\square\square$: $E^m\square T$, is
$defined by \\ \square \square (x1, \square, xm) = \square \square \square \square \square (x \square \square 1e \square, \square, x \square \square r e \square) = \\ \square \square \square \square \square (x \square \square (\square 1)e \square, \square, x \square \square (\square r) e \square) \\ \square, \square \square, \square$
Definition 3.2 An r-swlin map $\Box(x_1, \Box, x_m)$ is said skewsymmetric if for any $\Box\Box S_r$ is $\Box\Box = \Box\Box\Box$ where
\square =1(\square = \square 1) for any even (odd) permutation \square .
Theorem 3.1 <i>An</i> r -swlin map $\Box = \Box \Box \Box \Box \Box$ is skewsymmetric if and only if \Box is skewsymmetric. <i>Proof.</i> Suppose \Box skewsymmetric, then $\Box = \Box \Box \Box \Box \Box \Box (x \Box \Box e \Box, x, x \Box r e \Box) = \Box \Box \Box \Box (x \Box \Box e \Box, x, x, z, z,$
Copyright: © 2025 Continental Publication

Vol. 13 No. 2 | Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15912025

	DOI:https://doi.org/10.5281/zenodo.15912025
$ \Box, \Box \Box, \Box $ so $ \Box, \Box $ = o for all $x_{\Box} \Box 1e_{\Box}, \Box, x_{\Box} \Box$	$^{r}e_{\square}$, then $\square = \square_{\square}\square$. \square
Theorem 3.2 Every r-swlin map $\Box(x_1, \Box, x_m)$ determine by	es an r-swlinskewsymmetric map \square , given
	$\Box r e \Box$)
where the second sum on right side is over all permutation	ns $\square \square^{S_r}$.
Proof. For any $\square S_r$ $\square = \square \square (\square \square \square \square \square \square) = \square \square \square \square \square \square \square$ $\square, \square \square \square, \square \square \square, \square \square$	
Theorem 3.3 Let $\square = \square\square$, $\square \square\square\square\square$: $E^m \square F$ be completely determined by its values on a basis of E and by the constants $\square\square\square$.	an r-swlinskewsymmetric map, then \Box is
i n i i $Proof. Let \{e_{\square}\} be a basis of E. Let x = \square \square = 1x \square e_{\square}, i = 1, \square$	\square , m be vectors in E and $X = (x_{\square})$, then
$\Box(x_1,\Box,x_m) = \Box(\Box x_{\Box} e_{\Box},\Box,\Box x_{\Box} e_{\Box})$ $\Box = 1 \Box = 1$	
$ \begin{array}{ll} n & n \\ = \square \square \square \square \square ((\square x \square \square 1e \square) \square, \square, (\square x \square \square r e \square) \square) \square \square I \\ \square, \square & \square = 1 \qquad \square = 1 \\ = \square \square \square \square ((\square \square \square x \square \square 1e \square) \square, \square, (\square \square \square r \square (e \square \square e \square)) \square \square I $	
$= \square \square \square \square (\square \square \square x \square \square 1 \square x \square \square r \square (e \square , \square, e \square)) \square \square$ $\square, \square \square = \square, \square, \square 1 \square r \square 1 \square 1$	וטב
1 r	
$= \square \square \square \square \mid X_{\square} \square \mid \square (e_{\square}, \square, e_{\square})$ $1 \qquad r$	
\square , \square where $^{X}\square^{\square}$ is the square submatrix of X determined by row Example 3.1 <i>Let</i> \square :(\square 3) 3 \square \square 3 <i>be a 2-swlin skewsymm</i>	
$ \Box x x \Box \Box (x,x,x) = \Box j1, j2 \Box \Box \qquad i1, j1 i1, j2 \Box \downarrow 1 2 3 (i1,i2), \Box 1 2 2 i1,i2 \Box (j,j) \Box I 3 \Box 2 1 2 2 $	xi,j xi,j \square \square
3 where $x_i = \Box k = 1x_{k,i}e_k \Box \Box$. Then	
j, j $\Box(x_1, x_2, x_3) = \Box \Box i_{11}, i_{22} \Box (x_{i1} j_{1}e_{i1} \Box x_{i2} j_{1}e_{i2}, x_{i1} j_{2})$ $(i_{1}, i_{2}), (j_{1}, j_{2}) \Box I_{23}$	2 ei1 □ xi2 j2 ei2)
$\Box j$, $j2\Box xi1$, $j1$ $x i1$, $j2\Box (ei,ei)$	
Copyright: © 2025 Continental Publication	

Journal of Statistical and Mathematical Sciences Vol. 13 No. 2 | Imp. Factor: 8.99

	DOI:https://doi.org/10.5281/zenodo.15912025
$=$ $\Box i1,i$	
12 x x 1 2	
$(i,i),(j,j)\Box I_3$ i_2,j_1 i_2,j_2	
1 2 1 2 2	
	r -swlinskewsymmetric map $\square_E(x_1,\square,x_m):E^m\square\square$
such that $\square(e_{\square}, \square, e_{\square}) = 1$, $\square \square I_{r^n}$, is said an r	-determinant function.
1 r	
	said the (r, \square) -determinant of $X = (x_{\square}^i)$, relative to
the basis	
$\{e_{\square}\}$. If $\square_{\square}\square = X_{\square}\square $ we denote $det_rX = X _r = \square$	
	ample of r-determinant function, consider a 2-swlin
function $\square = \square\square, \square \square\square\square\square$ defined by	
$\Box(x_1,\Box,x_m)=\Box\Box\Box\Box\Box e\Box\Box_1,x\Box\Box_1e\Box\Box\Box$	$\sqcup e \sqcup \sqcup r$, $x \sqcup \sqcup r$ $e \sqcup \sqcup$
, thatis	
$\Box(x\Box\Box 1e\Box,\Box,x\Box\Box re\Box) = \Box e\Box\Box 1,x\Box\Box 1e$	
where $\{e_{\square}\}, \{e^{\square\square}\}$ are a pair of dual bases in E and	
with $dimE = dimE^{\square} \square r$. The bilinear function \square	,∟ is non-degenerate and it is defined by
$\Box e \ i \ , x \Box i \ e \Box \Box = e \ i \ (x \Box i \ e \Box)$	
then $\Box(x_1,\Box,x_m) = \Box\Box\Box\Box\Box e\Box\Box_1,x\Box\Box_1e\Box$	$ \sqcup \sqcup \sqcup e \sqcup \sqcup r$, $x \sqcup \sqcup r$ $e \sqcup \sqcup$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
$= \square \square \square \square x \square \square 11 \square x \square \square r r$	
	T) The control of the E form 1:
	,T). The exponential functor F , from linear spaces to
sets, is defined by	
$F(T) = SW(E^m, T)$ for any linear space T	
$F(1) = SW(E^{m}, 1)$ for any intear space 1	
$\Box E(t), E(T) \Box E(H)$	
$\Box F(t): F(T) \Box F(H)$	
for any linear t :T \(\Bar{\text{H}}\)	
$\Box F(t)$: $\Box \Box \Box t \Box$	of the redeterminant function
The following proposition states the universality $F_{\mu\nu} = F_{\mu\nu} = F_{\mu\nu$	
] be an r -determinant function in E , then for any r -
swlinskewsymmetric mapping $\square = \square \square \square \square \square \square : E^m \square F$, there is a	m unique vector $f \square E$ such that
$\square(x_1,\square,x_m)=(\square_E(x_1,\square,x_m)(f)=\square\square\square\square\square\mid X\square\square$	$J J \square \square \square I r^m, \square \square I r^n, X_i \square E$
where f_{\square} are the components of the vector	
$f = (\Box(e \ 1 \ , \Box, e \Box 1r \), \Box, \Box(e \ \Box \ \Box \Box \Box \ nr \ \Box 1r \), \Box, \Box(e \ \Box \Box \Box \Box \Box) $	
\Box 1 \Box 1 r	
$\Box 1$ r $\Box n\Box$	
i n and \square are the \square \square \square \square elements of I	
	Γ•

Copyright: © 2025 Continental Publication

Vol. 13 No. 2 | Imp. Factor: 8.99

DOI:https://doi.org/10.5281/zenodo.15912025

Proof. Let $\{e_i\}$, $i=1,\square,n$ be a basis of E such that $\square_E(x_1,\square,x_m) = \square \square_{\square} \square \mid X_{\square} \square \mid \square(e_{\square},\square,e_{\square}) = \square \square_{\square} \square \mid X_{\square} \square \mid$ that is, $\Box(e_{\Box}, \Box, e_{\Box}) = 1$. Then, for any r-swlin skew symmetric map $\square(x_1,\square,x_m)=\square\square\square\square\square\mid X_{\square}\square\mid \square=(\square_E(x_1,\square,x_m))(f)$ \Box , \Box it follows $\square(e_{\square},\square,e_{\square}) = \square(e_{\square},\square,e_{\square}) \square(e_{\square},\square,e_{\square}) = 1 \square \square(e_{\square},\square,e_{\square})$ so \square and \square have the same values on the basis $\{e_{\square}\}$ and by theorem 3.3 it follows $\square = \square$. \square If \Box_E and \Box_E' are two r-determinant functions in E, then $\Box_E \Box_E \Box_E \Box_E'$, $\Box_F \Box_E'$, is a r-determinant function too. Let \Box_F be an r-determinant function in F and let $\Box: E \Box F$ be a linear mapping of vector spaces, where dimE = n, dimF = t, then $\square \square : E^m \square \square$, defined by $\square_{\square}(x_1,\square,x_m) = \square_F(\square x_1,\square,\square x_m) = \square_{\square}\square_F((\square x^{\square 1})_{\square},\square,(\square x^{\square r})_{\square})$ is an r-determinant function in E, where $\Box_F: F^r \Box \Box$ is an r-linear mapping on F, $\Box \Box I_{r^m}, \Box \Box I_{r^t}$. By theorem 3.4, $\square_{\square} = \square_F(f) = \square_{\square,\square,\square}\square_{\square}\square_{\square}\square_{\square} \mid X_{\square}\square \mid f_{\square}$ for an unique vector $f = (f_{\square})$. Let \square_F be another nonnullswilin skew symmetric map, then $\Box'F = \Box F(g) = \Box \Box \Box \Box | X\Box \Box | g\Box$ \square,\square,\square and $\square'\square = \square\square(g) = (\square F(f))(g) = \square\square\square\square | X\square\square | f\square g\square = \square'F(f\square)$ \square . \square . \square so the vector f does not depend on the choise of \square_F and it is determined by the map \square , then the notation $f = det \square$. **Example 3.3** Let \square and $^{A}\square$ be a linear map and its matrix respectively, defined by \Box_1 $o\square$ \square : \square 2 \square \square 3 $A \square = \square \mathbf{0}$ 1 $\square \square : (x, y) \square \square (x, y, x \square y) \square \square 1 1 \square \square$ besides let $\square 3 : (\square^3)^3 \square \square$ be a 2-determinant function and $x_i \square \square^2$, then $\square = \square \square 3 (\square x_1, \square x_2, \square x_3) = \square^{12} \square (\square x_1, \square x_2) \square^{13} \square (\square x_1, \square x_3) \square^{23} \square (\square x_2, \square x_3)$ 2 $= \Box 12 \Box (\Box xi1 \Box ei, \Box xi2 \Box ei) \Box \Box 13 \Box (\Box xi1 \Box ei, \Box xi3 \Box ei) \Box \Box 23 \Box (\Box xi2 \Box ei, \Box xi3 \Box ei)$ i=1i=1i=1i=1i=1 $= \square^{12} \mid X^{12} \mid \square (\square e_1, \square e_2) \square \square^{13} \mid X^{13} \mid \square (\square e_1, \square e_2) \square \square^{23} \mid X^{23} \mid \square (\square e_1, \square e_2)$ \boldsymbol{x} \boldsymbol{x} ij1i where XSince

Copyright: © 2025 Continental Publication

x2i x 2j

Vol. 13 No. 2 | Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15912025 $\square \square \square$ $\square \square_{23}$ $\Box(\Box e_1, \Box e_2) = \Box((1,0,1),(0,1,1)) = \Box_{12}$ 0 11 11 $1 = \square 12 \square \square 13$ then The expression for $det \square$ may be obtained immediately by the matrix $^{A}\square$, see [2] \Box 1 $0\square$ \Box 1 01 00 = \Bigcup 12 = \Bigcup 12 \Bigcup 13 \Bigcup 23 $\square \square \square 3$ $1\square$ $det2, \square A \square = det2, \square \square o$ $\square \square 1 1 \square \square 0$ 11 11 **Theorem 3.5** Let \square : $E \square F$ be a linear mapping and $A_{\square} = (\square_{\square} \square)$ its matrix relative to the bases $\{e_{\square}\},\{f_{\square}\},$ $\square = 1, \square, n$, $\square = 1, \square, t$. Let $\square_F = \square \square, \square \square \square \square \square \square F$: $F^m \square \square$ be an r-determinant function. If \square_F ($f \square \square \square$ \Box , f_{\Box}^{r}) =1, then $\square \square (x_1, \square, x_m) = \square \square \square \square (\square \mid X \square \square \mid A \square \square \mid) \square \square I rm, \square \square I rn, \square \square I r t$ ii) $\square_{\square}(e_1,\square,e_n) = \square_{\square}\square_{\square} |A_{\square}\square|$ \Box where A_{\square} is the submatrix of A determined by rows indexed by \square and columns indexed by \square , for \square $x^{\square} = \square \square^n = 1 \ x_{\square} \square e_{\square}, \square = 1, \square, m \text{ and } X = (x_{\square} \square).$ Proof. i) n $\square_{\square}(x_1,\square,x_m) = \square_F(\square x_1,\square,\square x_m) = \square_F(\square x_{\square}^1\square e_{\square},\square,\square x_{\square}^m\square e_{\square})$ $\square = 1$ $\square = 1$ n t t n $= \Box F(\Box x \Box 1 \Box \Box 1 \Box f \Box, \Box, \Box x \Box m \Box \Box \Box m f \Box)$ $\square = 1 \square = 1 \square = 1 \square = 1 t n$ t n $= \Box F(\Box(\Box x \Box 1 \Box \Box \Box) f \Box, \Box, \Box(\Box x \Box m \Box \Box \Box) f \Box)$ $\square = 1 \square = 1 n n$ $= \square \square \square \square F(((\square x \square \square 1 \square \square \square) f \square), \square, ((\square x \square \square r \square \square \square) f \square) \qquad \square \square I rt \square \square Irm$ \square , \square \square =1 \square =1 n \Box , \Box = \Box 1, \Box , \Box r $\square = 1$ $\square = 1$ $\square \square S_r$, by П n $\square \square_{\square}(\square x_{\square} \square \square_{\square})\square(\square x_{\square} \square^{r}\square_{\square} \square^{r}) = \square |X_{\square} \square| |A_{\square} \square| \text{ it follows i)}.$ $\square = \square, \square, \square \square = 1 \square = 1 \square 1 r$ ii) It is a special case of i) for $X = I_n$. The scalar $det_{r,\square}\square = \square\square$, $\square\square\square\square \mid A_{\square}\square \mid$ will be called the (r,\square) -determinant of \square , relative to the bases $\{e_{\square}\},\{f_{\square}\}.$ If $\square_{\square}\square=|A_{\square}\square|$, then $\square\square,\square|A_{\square}\square|^2$ will be denoted by $det_r\square$ or $|\square|_r$

Copyright: © 2025 Continental Publication

Journal of Statistical and Mathematical Sciences Vol. 13 No. 2 | Imp. Factor: 8.99

DOI.httma./	/doi ona	/10 E201	/manada	1501	2025
DOI:https:/	/ aoi.org/	10.5281	/zenoao.	1591	ZUZ5

Theorem 3.6 Let $\square:E \square F$ and $\square:F \square G$ be in	linear mappings of vector spaces. Let \square_F be a
determinant function in	
$F. If x_1, \square, x_m \text{ are vectors in } E, \text{ then } \square \square \square \square (x_1, \square, x_m) = \square \square \square \square \square \square (x_1, \square, x_m)$	
Proof.	
$\square_{\square\square\square}(x_1,\square,x_m)=\square_G(\square\square\square(x_1,\square,x_m))=\square_\square(\square(x_1,\square,x_m))=\square(\square(x_1,\square,x_m))=\square(\square(x_1,\square,x_m))=\square(\square(x_1,\square,x_m))=\square(\square(x_1,\square,x_m))=\square(\square(x_1,\square,x_m))=\square(\square(x_1,\square,x_m))=\square(\square(x_1,\square,x_m))=\square(\square(x_1,\square,x_m))=\square(\square(x_1,\square,x_m))=\square(x_1,\square,x_m)$	$(x_1, \square, \square x_m)) = \square_{\square} \square_{\square} \square_{\square} (x_1, \square, x_m)$
4. The (t,k)-forms	
Let \square^{n_p} be the tangent space of \square^n at the point p an	
the linear space of the k-linear alternating maps □:(
$t \square n$, the set of all k-linear alternating maps \square :	$(\square^{n_p})^t \square \square$. The set $\square^{k_t} (\square^{n_p})^{\square}$, by the usual
operations of functions, is a linear space. If \Box_1, \Box_t belong to $(\Box^n_p)^{\Box}$, then an ϵ	element $\square_1 \perp \square \square \square \square_t \square \square^k (\square^{n_p})^\square$ is
obtained by setting	$\frac{1}{2} \frac{1}{2} \frac{1}$
$\Box 1(v1)$ $(\Box_1 \Box \Box \Box_t)(v_1, \Box, v_k) = det_{k,\Box} \Box_i(v_j) = \Box$ $\Box(v) \qquad t \ 1$	$\Box \Box 1(vk)$
$(\square_1 \square \square \square \square_t)(v_1,\square,v_k) = det_{k,\square} \square_i(v_j) = \square$	
$\sqcup (v)$ t 1	
where $i = 1, \square, t, j = 1, \square, k$ and $v_j \square \square^n$.	$\Box_t(v_k)$
where $t=1, \ldots, t$, $j=1, \ldots, K$ and $0, \ldots$.	
Observe that $\square_1 \square \square \square \square_t$ is k-linear and alternate.	
Example 4.1 When \Box_1, \Box_2, \Box_3 belong to $(\Box_{3p})\Box$, an	element $\square_1 \square \square_2 \square \square_3 \square \square^2_3(\square_{3p}) \square$ is obtained
by the 2-swlin skewsymmetric map	
	f .
$\Box_1(v_1)$ $(\Box_1 \Box \Box_2 \Box \Box_3)(v_1,v_2) = det_{2,\Box} \Box_i(v_j) = \Box_2(v_1)$	
$\Box 1(v1)$	$\Box 1(v_2)$ $\Box_i(v_2)$
$\square_1 \square \square_2 \square \square_3)(v_1,v_2) = det_{2,\square} \square_i(v_j) = \square_2(v_1)$ $\square(v)$	
3 1	((UVII))
	$=$ $\Box_i(v_2)$
	□; (• <u>2</u>
$(i1,i2)$ $\square I23,\square i i \square \square$ 1 2	$\Box_3(v_2)$ $i_1 < 2 \ 1$) 2
$(i1,i2)$ $\square I23$, $\square ii$ \square \square 1 2 and \square_1 \square \square_2 \square \square_3 is a bilinear alternating map on t	$\Box 3(v_2)$ $i_1 < 2$ 1) 2 he vectors v_1, v_2 .
$(i1,i2)\Box I23,\Box i i \Box \Box$ 1 2 and $\Box_1 \Box \Box_2 \Box \Box_3$ is a bilinear alternating map on t Let $x^i:\Box^n \Box \Box$ be the function which assigns to each	$\Box 3(v2)$ $i1 < 2$ 1) 2 2 he vectors v_1, v_2 . th point of \Box^n its i^{th} -coordinate. Then $(dx^i)_p$ is a
$(i1,i2)$ $\square I23$, $\square i i \square \square$ 12 and $\square_1 \square \square_2 \square \square_3$ is a bilinear alternating map on t Let $x^i : \square^n \square \square$ be the function which assigns to eac linear map in $(\square^n)^\square$ and the set $\{(dx^i)_p; i=1, \square, n\}$ is	$\Box 3(v2)$ $i1 < 2$ 1) 2 2 he vectors v_1, v_2 . The point of \Box^n its i^{th} -coordinate. Then $(dx^i)_p$ is a the dual basis of the standard $\{(e_i)_p\}$. The element
$(i1,i2) \square I23, \square i i \square \square$ 12 and $\square_1 \square \square_2 \square \square_3$ is a bilinear alternating map on t Let $x^i : \square^n \square \square$ be the function which assigns to eac linear map in $(\square^n)^\square$ and the set $\{(dx^i)_p; i=1, \square, n\}$ is $(dx^{i})_p \square \square \square \square (dx^{i})_p$ is denoted by $(dx^{i})_p \square \square \square (dx^{i})_p$	$\Box 3(v2)$ $i1 < 2$ 1) 2 2 he vectors v_1, v_2 . In point of \Box^n its i^{th} -coordinate. Then $(dx^i)_p$ is a the dual basis of the standard $\{(e_i)_p\}$. The element and belongs to $\Box^k_t(\Box^n_p)^\Box$.
$(i1,i2)$ $\square I23$, $\square i i \square \square$ 12 and $\square_1 \square \square_2 \square \square_3$ is a bilinear alternating map on t Let $x^i : \square^n \square \square$ be the function which assigns to eac linear map in $(\square^n)^\square$ and the set $\{(dx^i)_p; i=1, \square, n\}$ is	$\Box 3(v2)$ $i1 < 2$ 1) 2 2 he vectors v_1, v_2 . The point of \Box^n its i^{th} -coordinate. Then $(dx^i)_p$ is a the dual basis of the standard $\{(e_i)_p\}$. The element and belongs to $\Box^k_t(\Box^n_p)^\Box$. I_t^n is a basis for $\Box^k_t(\Box^n_p)^\Box$. Proof. the elements
$(i1,i2) \square I23, \square i i \square \square$ 12 and $\square_1 \square \square_2 \square \square_3$ is a bilinear alternating map on to Let $x^i : \square^n \square \square$ be the function which assigns to each linear map in $(\square^n)^\square$ and the set $\{(dx^i)_p; i=1,\square,n\}$ is $(dx^i)_p \square \square \square (dx^i)_p$ is denoted by $(dx^i)_p \square \square (dx^i)_p$ Theorem 4.1 The set $\{(dx^i)_p : i=1,\square,n\}$ of $\{(dx^i)_p : i=1,\square,n\}$ are linearly independent. In i i i	$\Box 3(v2)$ $i1 < 2$ 1) 2 2 he vectors v_1, v_2 . The point of \Box^n its i^{th} -coordinate. Then $(dx^i)_p$ is a the dual basis of the standard $\{(e_i)_p\}$. The element and belongs to $\Box^k_t(\Box^n_p)^\Box$. I_t^n is a basis for $\Box^k_t(\Box^n_p)^\Box$. Proof. the elements
$(i1,i2) \square I23, \square i i \square \square$ 1 2 and $\square_1 \square \square_2 \square \square_3$ is a bilinear alternating map on the Let $x^i : \square^n \square \square$ be the function which assigns to each linear map in $(\square^n)^\square$ and the set $\{(dx^i)_p; i=1,\square,n\}$ is $(dx^i)_p \square \square \square (dx^i)_p$ is denoted by $(dx^i)_p \square \square (dx^i)_p$. Theorem 4.1 The set $\{(dx^i)_p \square \square (dx^i)_p\}$ are linearly independent. In the i in i	$\Box 3(v2)$ $i1 < 2$ 1) 2 2 he vectors v_1, v_2 . The point of \Box^n its i^{th} -coordinate. Then $(dx^i)_p$ is a the dual basis of the standard $\{(e_i)_p\}$. The element and belongs to $\Box^k_t(\Box^n_p)^\Box$. I_t^n is a basis for $\Box^k_t(\Box^n_p)^\Box$. Proof. the elements
$(i1,i2) \square I23, \square i i \square \square$ 1 2 and $\square_1 \square \square_2 \square \square_3$ is a bilinear alternating map on the Let $x^i : \square^n \square \square$ be the function which assigns to each linear map in $(\square^n)^\square$ and the set $\{(dx^i)_p; i=1,\square,n\}$ is $(dx^i)_p \square \square \square (dx^i)_p$ is denoted by $(dx^i)_p \square \square \square (dx^i)_p$. Theorem 4.1 The set $\{(dx^i)_{n=1}^{n=1} \square (dx^i)_{n=1}^{n=1} \square ($	$\Box 3(v2)$ $i1 < 2$ 1) 2 2 he vectors v_1, v_2 . The point of \Box^n its i^{th} -coordinate. Then $(dx^i)_p$ is a the dual basis of the standard $\{(e_i)_p\}$. The element and belongs to $\Box^k_t(\Box^n_p)^\Box$. I_t^n is a basis for $\Box^k_t(\Box^n_p)^\Box$. Proof. the elements
$(i1,i2) \square I23, \square i i \square \square$ 1 2 and $\square_1 \square \square_2 \square \square_3$ is a bilinear alternating map on the Let $x^i : \square^n \square \square$ be the function which assigns to each linear map in $(\square^n)^\square$ and the set $\{(dx^i)_p; i=1,\square,n\}$ is $(dx^i)_p \square \square \square (dx^i)_p$ is denoted by $(dx^i)_p \square \square (dx^i)_p$. Theorem 4.1 The set $\{(dx^i)_p \square \square (dx^i)_p\}$ are linearly independent. In the i in i	$\Box 3(v2)$ $i1 < 2$ 1) 2 2 he vectors v_1, v_2 . The point of \Box^n its i^{th} -coordinate. Then $(dx^i)_p$ is a the dual basis of the standard $\{(e_i)_p\}$. The element and belongs to $\Box^k_t(\Box^n_p)^\Box$. I_t^n is a basis for $\Box^k_t(\Box^n_p)^\Box$. Proof. the elements

Vol. 13 No. 2 | Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15912025

$ \Box a_{i1,\Box,it} dx_{i^{1}} \Box \Box \Box dx_{i^{t}}(e_{j1},\Box,e_{jk}) \Box,it\Box It \ n \ i1 $	DOI:https://doi.org/10.5281/zenodo.15912025
$ \begin{array}{cccc} i & i \\ dx & 1e j \square \square dx & 1e j \\ 1 & k \end{array} $	
$= \Box ai1, \Box, it \Box $	
	i \square_{j1} i $\square_{j1} k$ 1 $\square_{j1} k$ 1 $\square_{j1} k$ i $\exists \exists a i1, \square, it \square j1 t$ $\square jt k$ $i, \square, i \square I^n$ 1 t t
$\Box n\Box$	= 0
Without loss of generality, suppose \Box_r , equations 1 t	$_{\square,r}$ all equal, then the $_{\square k}$ $_{\square \square}$
n n $\square_{r,\square,r} ar_{1,\square,rt} = 0, r_{1,\square,r_t} \square (I_t)_{j_1,\square,j_k}, j_{1,\square,j_k} \square I$ has only the t trivial solution. That is $a_{i,\square,i} = 0$.	k, are a linear omogeneous full rank system, so it
1 t The set $\{(dxi \ ^{1} \square \square \square dxit)_{p}\}$ spans $\square^{k_{t}}(\square^{n_{p}})\square$, in ot $\square = \square a_{i1}, \square, it \ dxi \ ^{1} \square \square \square dx^{it} i_{1}, \square, it \square I_{t}^{n}$ $i_{1}, \square, it \square I_{t}^{n}$	ther words any $\square \square \square^{k_t} (\square^{n_p})^{\square}$ may be written
in fact, if $\Box = \Box \Box (e_{i1}, \Box, e_{it}) dx^{i_1} \Box \Box \Box dx^{i_t}$ $i_1 \Box i_2 \Box dx^{i_2} \Box dx^{i_3} \Box \Box dx^{i_4}$	
$i1, \square, it \square It^n$ then $\square(e_i, \square, e_i) = \square(e_i, \square, e_i)$ for all $i_1, \square, i_t \square It^n$, so \square	$\square = \square$. Setting $\square(e_i, \square, e_i) = a_{i, \square, i}$, it
1 t 1 t 1 t 1 t 1 t follows the expression of \square .	
The above proposition generalizes the known theore $\Box^k(\Box^n_p)^\Box$, see [1].	
Theorem 4.2 The linear spaces $\Box^{k_t}(\Box^{n_p})^{\Box}$ and $\Box^{k_t}(\Box^{n_p})^{\Box}$ and $\Box^{k_t}(\Box^{n_p})^{\Box}$ Proof. Let $\Box = (\Box_1 \Box \Box \Box \Box_t)(v_1, \Box, v_k) \Box \Box^{k_t}(\Box^{n_p})^{\Box}$	

Copyright: © 2025 Continental Publication

Vol. 13 No. 2 | Imp. Factor: 8.99

DOI:https:/	/doi.org/10.528	1/zenodo	.15912025

$egin{array}{cccccccccccccccccccccccccccccccccccc$
so $\square\square\square^k(\square^{n_p})^\square$. Conversely, let o be the null function in $(\square^{n_p})^\square$, then any $\square\square\square^k(\square^{n_p})^\square$ may be written
$\Box = (\Box_1 \Box \Box \Box \Box_k)(v_1, \Box, v_k) = (\Box_1 \Box \Box \Box \Box_k \Box o \Box \Box \Box o)(v_1, \Box, v_k) \text{ so } \Box \Box \Box^k_t (\Box^n_p)^\square.$ If $\Box \Box \Box^k_t (\Box^n_p)^\square$, then \Box may be decomposed by elements of $\Box^k_t \Box_j (\Box^n_p)^\square$, where $k \Box t \Box j \Box t$, in fact
Theorem 4.3 Let □ = (□₁ □ □ □ □₁)(v₁, □, v_k) □ □ □ k_t (□ n_p) □, then □ i , □, i □ = 1 t □ j □ (□ $_i$ □ □ □ $_i$)(v_1 , □, v_k)
$(t \Box k) \Box (t \Box k \Box j \Box 1) \ tt^{-1}$ $t\Box j$ $t\Box j \ Proof.$
$\square = \square (it1, \square\square, k \ it\square) 1 \ \square^I tt\square \ 1 \ (\square_i 1 \ \square\square\square\square it\square 1) (v1, \square, vk)$
$egin{array}{c ccccccccccccccccccccccccccccccccccc$
$t\Box j$ $\Box t\Box$ indeed \Box is the sum of $\Box\Box\Box k\Box\Box\Box$ determinants, the last right side has the same number $t\Box(t\Box j\Box 2)$ $\Box t\Box j\Box\Box t\Box j\Box\Box 1\Box$
$(t \square k) \square (t \square k \square j \square 1) \square \square \square \square k \square \square \square \square \square \square t \square j \square \square \square$ References
NEICICHUES

- M.P. do Carmo Differential Forms and Applications Springer, Berlin, 1994.
- F. Fineschi, R. Giannetti Adjoints of a matrix Journal of Interdisciplinary Mathematics, Vol. 11 (2008), n.1, pp.39-65.
- W. Greub Linear Algebra Springer, New York, 1981.
- W. Greub Multilinear Algebra Springer, New York, 1978.
- S.MacLane, G. Birkhoff Algebra MacMillan, New York, 1975.
- M.Marcus Finite Dimensional Multilinear Algebra Marcel Dekker, Inc. New York, 1973.
- D. G. Northcott Multilinear Algebra Cambridge University Press, Cambridge, 1984. Copyright: © 2025 Continental Publication

Vol. 13 No. 2 | Imp. Factor: 8.99

DOI:https://doi.org/10.5281/zenodo.15912025 S. Ovchinnikov *Max-Min Representation of Piecewise Linear Functions* Beiträgezur Algebra und Geometrie, Vol. 43 (2002), n.1,pp. 297-302.