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1. Introduction  
We consider the optimization of a 
convex function in N-space which is a 
special case of the non-linear 
optimization problem of minimizing a 
non-linear function ( ) over the n-
dimensional Euclidean space R. The 
range of applications in which 
determination of  at which ( ) attains its 
minimum   are important is extremely 
wide.    
The convex function is specially shaped 
so that if it possesses a finite minimum, 
the minimizing value X*, say, is unique 
and the gradient of the function 
vanishes at X* when  is differentiable 
and strictly convex. A number of finite 
terminating algorithms for obtaining 
approximate values of X are in 
literature. We implore the use of 
descent  
(steepest) method and the Newton’s 
method. The basic problem is that of 
minimizing the non-linear convex 

function  
( ) subject to constraints  
  
( ), = 1, 2, … .   
  
Then one can view the problem as that of minimizing f over a closed convex subset. In other words, Let 
T be the projection map of   onto , that is for   ,   is that elements in  such that 
‖ − ‖ = ‖ − ‖.  
So that the sequence of elements   is then defined as follows  
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  = −                                        (1)  
Finally, the optimizer can be assumed to exist and the problem is to find it with minimum functional 
evaluation. We try to locate this X*of the non-differentiable convex function by exploiting the 
connection between a convex function and the accretive operator and central in this formulation is that 
of optimal experimental design.  
2. Constrained Optimization. 
An analysis of the multivariable unconstrained non-linear multivariable unconstrained non-linear 
maximization problems set the stage for the analysis of constrained models. The algorithmic difficulties 
to be overcome here are present also in the constrained case and the techniques below can be suitably 
modified when constraints are imposed. However, a constrained problem can often be solved by first 
converting to an unconstrained problem. 
Many of the techniques for solving the general variable non-linear optimization actually employ simple 
variable optimization in one of the steps for example, a linear function  
( ) =  +  
Has its optimal solutions at the extreme points, end points, If in a closed interval i.e.  

   

To guarantee that solution techniques are valid, we impose certain assumptions.   
2.1. Assumptions of Constrained Optimization. 
1. For all values of ,  ( ) , is uniquely defined and finite.   

2. For all    is  uniquely defined, finite and continuous.   
3. ) possess a finite optimum   
4. for any possible value of,  ( ) , say C, there exist an associated finite number  . Such that 
every  
 ≤   ,  ( ) ≥ C 
2.1.1 The Search for Optimal Solution. 
In solving non-linear programming problems, it might appear a bit difficult but there are several 
fundamental theorems that can be utilized to guide our search even in the face of such difficulties. 
However, if such conditions as convexities or concavity are met, the characterization of the optimal 
solution becomes relatively well defined.  But we are dealing with bounded continuous functions, by 
Weierstrass theorem guarantees us that a maximum or minimum will always exist either at a point 
interior to the boundaries of the feasible solution variable or at the boundaries itself. This is intuitively 
clear, since a bounded function must always possess maximum or minimum values somewhere within 
the region of interest. If the function is continuous over the domain of interest, stationary points can be 
located through the use of differential calculus provided all derivations can be found.  
2.2. Steepest Descent Method.  
The impossibility in finding the minimum of a function analytically paves way for an iterative method 
for obtaining an approximate solution to it also the Newton’s method though being effective but it is 
unreliable. Hence we consider the steepest descent approach.  Given a function  that is differentiable 
at , the direction of the steepest descent is the vector − ∇ ( ).   
( ) = ( + )                                   (1.1)   
Where u is a unit vector.    

 
  
: .   |(0) = ∇ ( ). = |∇ ( )|    
  

| ( ) =   + ⋯ … . . +   

+ ⋯ . . +   

∇ ( + )   .   
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Where is the angle between∇ ( ) and U. it follows that |(0) is minimized when   which yields   
  

  

  
We can therefore reduce the problem of minimizing a function of several variable to a single variable 
minimization problem, by finding the minimum of ( ) for this choice. ie, we can find the value of , for  > 
0, that minimizes   
  
( ) = − ∇ ( )                                (1.2)  
  
After finding the minimizer  , we can set  
  
= −  ∇ ( )  
  
and continue the process by searching from   in the direction of−∇ ( ) to obtain  by 
minimizing   
  
( ) = ( − ∇ ( ))  
and so on  
  
This is the method of steepest descent qiven an initial guess . The method computes a sequence of 
iterates, where  
                                     = −  ∇ ( )  , = 0, 1,2 … …               (1.3)  
  
Where   0 minimizes the function   
  
( ) = − ∇ ( )                              (1.4)  
  
Example;  
  Consider the non-linear minimization problem   
  
                Minimize ( , ) =  − + 2 + 2 +               (1.5)  
  
Using steepest descent method with the initial point at  = (0,0)  

 
  
Solution:  

  

Hence convex.  

  
  

 ,  

∇ = 
( ) 

  , 
( )  

= ( 1 + 4 +             . − 1 + 2 + 2 ) 



Journal of Statistical and Mathematical Sciences 
Vol. 13 No. 3 | Imp. Factor: 8.99 

DOI:https://doi.org/10.5281/zenodo.15913964 

Copyright: © 2025 Continental Publication 

4 

  
  
Substituting in (1.5) we obtain   

  

  
So from this we can proceed to get the result in the table below.  
  
Table 1: Results of the minimization problem using the steepest descent method  
  

Iteration      Step size  
0  0  0  1  
1  -0.8  1.2  0.5  
2  -1  1.4  1  
3  -0.6  1.8  0.2  
4  -0.86  1.34  0.12  
5  0.993  1.352  0.3  
6  -0.922  1.409  0.367  
7  -0.9632  1.4172  0.3170  
8  -0.9567  1.4497  0.3527692  
9  -0.9722  1.4526  0.2136219  
10  -0.9701  1.4541  0.38931  
11  -0.0017  1.4905  1.1367029  
12  -0.9967  1.4949  0.1952688  
13  -0.0002  1.4992  1.1827957  
14  -0.9997  1.4995  0.532258  
15  -0.9998  1.4998  0.666666  
16  -0.9999  1.4997  0.09375  

 
Optimal value -1.0, 1.5 
2.3 Nature of the Objective Function 
Suppose that the function is now restricted further by adding an assumption about its shape. A general 
variable function ( ) is defined as convex if the inequality is replaced by0 < > 1 so that we have the 
sufficient conditions for a minimum. 
Given assumption (1) to (4) in 2.1 and that ( ) is convex, if each  = 0  at a point   then ( ∗) is the 
minimum value for ( ).  
Further, if ( ) is strictly convexthen  is unique.  
Therefore, local minimum of a convex function is also a global minimum.  
Thus if one applies the method at steepest descent using an optimal step size, then the sequence f 
descent using an optimal step size, then the sequence ( ) decrease the limit to the minimum value of ( )  
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If the function is strictly convex, the entire sequence  converges to the unique optimal solution  . 
3. Locating the Optimizer of a Non-Differentiable Convex Function in N-Space  
A convex function in n-space is defined as; for any two points   and0 ≤ ≤ 1 , [ (  + (1 − 
)  .  

 
Where  is non-differentiable convex function, a unique minimizing value can be assumed to exist and 
the problem is to find it with minimum functional evaluation. We try to locate of the differentiable 
convex function f by exploiting the connection between a convex function and the accretive operator. 
Central in this formulation is the method of optimal experimental design. 
3.1 Accretive Operator’s  
A mapping T with domain ( ) and range ( ) is accretive if the inequality ⟨ − ∗, − ∗⟩ ≥ 0 
holds for every  , ∗ ( ) , where ⟨⟩ denotes the inner product in  
If ≥ this is replaced by we say that T is strongly accretive.  For a convex function, ( ) satisfies:   
  
( +  ∗) ≤ ( ) +  ( )  
  
≥ 0  , ≥ 0     + = 1       ∗   
Minty [10] for every   , we can associate the vector  ∗ ,such that   

  
So that  
( ∗) − ( ) ≥ ⟨ ∗ − , ⟩                                                             (1.7) 
Adding equations 1.6 and 1.7, we have  
0 ≥ ⟨ − ∗, ∗⟩ + ⟨ ∗ − , ⟩  
= ⟨ − ∗, − ∗⟩ 
Thus, we can see that the A associated with the convex function(3.1) is`accretive and that = 0. Again 
from equation 1.6 we have ( ) − ( ∗) = 0 so that ( ) ≥ ( ∗) Hence   is the optimizer of F when ∗ = 0  
.  
If F differentiable,  is identifiable with the gradient of ( ) at .  
Let’s denote the kernel of A by 

 { : = 0} 
Then the kernel of the accretive operator A associated with the convexn function  turns out to be the 
optimizer of . Hence the problem of locating the optimizer of  is equivalent to that of obtaining the 
kernel of the accretive operator A.  
Chidume(2) showed that given a sequence { }∞ satisfies A if 
  :  = 1 , 0 < < 1      ≥ 1  
  :  ∑∞  ∞  
  ∶ ∑∞ ( ) < ∞  
  
The sequence { }∞ generated by ( ), = −  , ≥ 0 converges strongly to the 
solution of the equation = 0 where A is strongly accretive with error estimates ‖ − ∗‖ = 0 ()  
However, the main constraint is that in a given situation, we may not be able to compute the vector AX 
but only observe it at a point. Thus we employ the method of response surface exploration to estimate 
it. This method is optimal because it minimizes the Euclidean distance between the true and estimated 
accretive operator.  
3.1.1. Estimating the Accretive Operator.   
Let ( ) = ( ∗) = ( )such that equation 3.2becomes 
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Suppose that the design is chosen in the neighbourhood of, the relation between Y(( )  the vector = ∗     is 
well represented by the hyperplane.  
                                                                                           (1.9)  
Where isan observableand it is error used to account for one’s inequality to describe  which the 
so called response surface is.  
Let us suppose also that as a result of the experimental design ,  ,it is possible to construct an 
estimate of ‘’indirectly’’based on the measured values ( ), … … … . . ( ) such that the Euclidean distance 
between the true accretive operator and the estimated accretive operator  is minimized. This is very 
possible for each observable Y, we associate a positive linear operator P such that 
i. If  ≥ 0  ℎ  ( ( ) ≥ 0  
ii. ( , ( ) + ( ) = [ ( ] + [ ( ] iii. − [ ( ][ ( ] − [ ( = ⟨ ( − ( , ( ) − ( ( )⟩  
= − ( ( ) ≤ : =   
0                                     ∶ ≠ : 
iv.  ( = 0  
  
So that ( )   

  
Let   − ∗ =    
  
So   

   

                                         
and  

=  |   
  

∗                                                                      (2)  

=   
 is a symmetric matrix.  
Thus, when m is non-singular, the unique solution of the equation  
  
( ∗) = ( ∗),       ∗   
Where  
                              ( ∗) = ∑ ( ( ) − ( ∗)                                                     (2.1)  
Is   
                                ∗ =                                                                      (2.2)  

 
Which turns out to be the least square estimate of   
  
Then  
    ∗) =      | ∗ = ∗  
  
So that  
‖ ∗ − ∗‖ = ( ∗) =   
(where  is the identity matrix).  
 is not known and has no influence on the estimation of  and on the design used so that without loss of 
generality we assume  and hence magnitude of the Euclidean distance between the estimated and true 
accretive operator depends only on the design used.  
3.2   Numerical example   
Consider the convex function  
(   , ) = − + 2 + + 2   
  
The optimizer is   let the searching point be and let the design be = (0,0)  
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and let the design be   

 = 1         ℎ .  
Where = (  ,  , … … … . ). 
Design:   
Choose the four vertices of a square of a unit radius centered origin. 
Figure 1: The design  
  

 
We can state the problem as    
Minimize  , =  − + 2 + 2 +  ,    = ( , )  
  
So that if = (  ,… … … . . , ) is known and ( ) = ( ) − ( ∗) = ⟨ − ∗ , ∗⟩  
Our design point constitutes the following:  
    
= (1,1),    = (1, −1),    = (−1, 1), = (−1, −1)  
Then estimate for the accretive operator T denoted by A* is given by 
                                             (2.3)  
  
We denote the sequence { }∞   Iterated by      

 = −   
 

 
We see  such that so that  − ‖ <  the sequence{ }∞ will converge to the solution  
of = 0 for a finite n.   

  
   Let the response vector be   

   

  

⎛ 
= ⎜ ⎝ 

( 

 

) 
) 
⎞ 
)⎟  
) 
⎠ 

So that   
5 
⎛ 3 ⎞ 
                                                                           = ⎜−1⎟                                                      (2.4)  
5 
⎝ ⎠ 
  

With error estimate given 
as  
  

 ∗‖ = 0 ( )  

  
  
  
  
  
  
  
  
  
  

( - ,  1) 1   (1 ,  1)   

(1 ,  - 1)   ( - 1 ,  - 1)   

0   
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= (   | ) | =                                       (2.5)  
                 

  
          

So that  = 
 |   ℎ 
  
From the design  

 ∗ = ( | )  |                                                              
(2.6)  

              =  
  
So that   
  

1              1 
      1             − 1                                                                       (2.7) 
−1                1   
−1              − 1 
1 1 
1 1 −1 −1 1 −1 4 0 
= −1 1 = 0 4  
1 −1 1 −1 
−1 −1 

∗ = 
  

  
Having 

obtained A*, 
we approximate  
along 

   
  
Where =      ≥ 0  
  
For the first iteration we have  

  

The starting point is  
0 
=   

In order to estimate A*, we 
compute    
From the design so that  
  

=    −       = 1, 2 … … . . . , = 1, 2 , … … 
… 

  

Hence,  
  

             

0.25 
= 
0 

0 
0.25  

1 −1 −1 1 
−1 
−1  

5 
3 
−1 
5 

 
−0.25 
0.25 

−0.25 
− 0,25 

5 
3 
−1 
5 

  

Thus  

      =  1 
  
−1 
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0 
  
So that   

  

  
We continue in this manner for the second, third and so on. So the response   
  

  

  
Which we summarized in a column vector as  
3 
= 1  
1 
7 
The blue A* for the accretive operator    is then   

  

  
                                       

  
  
  
  
Hence we have the following result in the table  

  

 
 
 
 
Table 2: Result of the design  
  

    
0  0  

        

0.25   0.25  − 0.25  − 0.25 
0.25  − 0.25   0.25   − 0.25 
  
−1 
                                ∴ ∗ =    
−1 

3 1 
1 
7 

 =  0.75 + 0.25 − 0.25 − 1.75 
0.75 − 0.25 + 0.25 − 1.75 

 =  −1 
−1 
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-1  1  
-0.5  1.5  
-1.16  1.17  
-0.9686  1.335  
-0.9277  1.3906  
-0.9393  1.40306  
-0.9461  1.4136  
-o.9514  1.4217  
-0.9557  1.4283  
-0.9591  1.4338  
-0.9619  1.4384  
-0.9643  1.4423  
-0.9664  1.4457  
-0.9682  1.4487  
-0.9698  1.4513  
-0.9713  1.4536  
-0.9726  1.4557  
-0.9738  1.4576  
-0.9749  1.4593  
-0.9759  1.4605  

  
The performance of the steepest descent for the estimated accretive operator relative to the steepest 
descent  
method is summarized in the table below.  
Table 3: Steepest descent method for estimated accretive operator  

iterations  Steepest 
method   

descent  

  

Steepest 
method   

descent  

  

Steepest descent 
method estimated 
accretive operator  

for  

  

Steepest 
 descent 
 method  
estimated accretive 
operator  

for  

  

0  0   0   0   0   
1  -0.8   1.2   -1   1   
2  -1.0   1.4   -0.5   1.5   
3  -0.6   1.8   -1.16   1.17   
4  -0.86   1.34   -0.9686   1.335   
5  -0.933   1.352   -0.9277   1.3906   
6  -0.922   1.409   -0.9393   1.40306   
7  -0.9632   1.4172   -0.9461   1.4136   
8  -0.9567   1.4496   -0.9515   1.4217   
9  -0.9722   1.4526   -0.9557   1.4283   
10  -0.9701   1.4521   -0.9591   1.4338   
11  -1.0017   1.4905   -0.9619   1.4348   
12  -0.9967   1.4949   -0.9643   1.4423   
13  -1.0002   1.4992   -0.9664   1.4457   
14  -0.9997   1.4995   -0.9682   1.4487   
15  -09998   1.4998   -0.9698   1.4513   
16  -0.9999   1.4997   -0.9713   1.4536   
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17        -0.9726   1.4557   
18        -0.9738   1.4576   
19        -0.9749   1.4593   
20        -0.9759   1.4609   

  
4. Conclusion  
The steepest descent method for the estimated accretive operator solves the minimization problem with 
no reference to the derivative of the function. However, if the design are optimized the formulation of 
the steepest descent for the estimated accretive operator is the generalization of the ordinary steepest 
descent method.   
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