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Abstract: This paper delves into the realm of
differentiable manifolds and morphisms, emphasizing
their differentiability of class Ceo. We introduce
fundamental concepts, such as the tangle bundle T(M)
and the algebra of differentiable functions F(M) defined
on the real n-dimensional connected differentiable
manifold M. Furthermore, we explore the module of
differentiable sections of a vector bundle H, denoted as
I'(H). This investigation sheds light on the intricate
interplay between differentiable structures within the
realm of manifold theory.

School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha,
Hunan, P. R. China.

1 Introduction
In this paper, all manifolds and
morphisms are supposed to be
differentiable of class CU . Let M be a
real n-diemensional connected
differentiable manifold. T(M) and F(M)
are respectively the tangle bundle to M
and the algebra of differentiable
functions on M . Also, we denote by
LJ(H) the module of differentiable
sections of a vector bundle H .

A linear connection on M is a mapping

Keywords: Differentiable manifolds, Tangle bundle,
Algebra of differentiable functions, Differentiable —
sections, Vector bundle

0. OrMOOTM) OO(TM); (X, V)OO xY
satisfying the following conditions

WO reoov(@) O fOxZz00vZ,

(_2) UOx(fYO2)Of0OxYUOX )Y U xZ, forany f L1 F(M) and X, Y, Z[LI(TM) . The
operetor{lxis called the covariant differentiation with respect to X . Thus for any tensor field [ of type
(0, s) or

(1, s) we define the covariant differentiation Clx[1 of (I with respect to X by s
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(O xO)(X X, O, X)) OO x(OX, Xe, O, Xs)OOOX:, O, OxXi O, Xs), (1.1)
i1

for any X ;LJLI(TM) ,1i=1, 2, ..., s . Allinear connection [] on M is said to be a Riemannian connection
if —

Riemannian metric g satisfying Xg(Y, Z) O g(O xY, 2)U g(Y, Ox2), (1.2)

for any X, Y [U(TM) . An almost complex structure on M is a tensor field J of type (1, 1) on M such
that at — —

every point x[CIM we have J2 (1011, where I denotes the identify transformation of 7xM . A manifold M
endowed with an almost complex structure is called an almost complex manifold. The covariant
derivative of J is

defined by (00 x)Y OO xJY O JO xY, (1.3)

for any X, Y LILI(FM) . More, we define the torsion tensor of J or the Nijenhuis tensor of J by
[/, JI(X, V) Oux. JY]JO[Xx, YiOJJX, YOO JX, JY], (1.4)

for any X, Y ULI(TM), where [X, Y]is the Lie bracket of vector fields X and Y, that is,

[?(Z YOO xY OOy X . A Hermitian metric on an almost complex manifold M is a Riemannian metric

g
satisfying g(JX, JY) [ g(X, Y), (1.5)

for any X, Y ULI(TM) . An almost complex manifold endowed with a Hermitian metric is said to be
an almost

Hermitian manifold. Definition 1.1([3]). An almost Hermitian manifold M with Levi-Civita connection
[] is called a

quasi Kaehlerian manifold if we have (O xJ)Y (O xJ)JY O o, (1.6)

for any X, Y OUO(TM) . Definition 1.2([1]). An almost Hermitian manifold M with Levi-Civita
connection [ is

called a Kaehlerian manifold if we have [lxJ Clo, (1.7)

for any X LI[1(TM) . Obviously, a Kaehlerian manifold is a quasi Kaehlerian manifold. Let M be an m
dimensional Riemannian submanifold of an n -dimensional Riemannian manifold M . We denote by
TMU the __normal bundle to M and by g both metric on M and M . Also, we denote by [1 the Levi-Civita
connection on -
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__ M, denote by [ the induced connection on M, and denote by [1H the induced normal connection
onM._
Then, for any X, Y UJLI(TM) we have L1 xY L1 xY [ h(X, Y), (1.8) where h:
L(rm)O0(T™M) LO(TME) is a normal bundle valued symmetric bilinear form on [(TM) . The
equation (1.8) is called the Gauss formula and h is called the second fundamental form of M . Now, for
any

X O0O(TM) and VOO(TME) we denote by JAvX and OJOxV the tangent part and normal part of CxV

respectively. Then we have [1 xV LAvX 0PV . (1.9)

Thus, for any VLILI1(TMT) we have a linear operator, satisfying

gAvX, V) gX, AvY) Ug(h(X, Y), V). (1.10) _

The equation (1.9) is called the Weingarten formula. An m -dimensional distribution on a manifold M
is a mapping —

D defined on M , which assignes to each point x of M an m -dimensional linear subspace Px of TxM . A
vector —

field X on M belongs to D if we have Xy (12, for each xT1M . When this happens we write X (1CI(D). The

distribution D is said to be differentiable if for any x[IM there exist m differentiable linearly
independent vector fields X : L1L1(D) in a neighborhood of x . From now on, all distributions are
supposed to be differentiable of class

CH . Definition 1.3([1]). Let M be a real n -dimensional almost Hermitian manifold with almost complex
structure

J and with Hermitian metric g . Let M be a real m -dimensional Riemannian manifold isometrically
immersed in

M . Then M is called a CR-submanifold of M if there exist a differentiable distribution D: x[1Dx OT:M
, on M satisfying the following conditions: (1)D is holomorphic, that is, J(Dx) [1Dx, for each x[ 1M ,

(2)the complementary orthogonal distribution DP: x [0 DU [0 Tx M , is anti-invariant, that is, J(Dx)
L TxM U, for each x[LIM . Now let M be an arbitrary Riemannian manifold isometrically immersed in
an almost Hermitian

manifold M . For each vector field X tangent to M , we put JX LLIX LILIX, (1.11)
where [1X and [1X are respectively the tangent part and the normal part of JX . We denote by P and Q
respectively the projection morphisms of TM to D and DU, that is,

xXopxoex, (1.12)

for any X [L1[1(TM) . Then we have
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00X O JPx (1.13)
0X 0O JOX, (1.14)
and O=00p (1.15)
for any X [L1LJ(TM) . Moreover, we
have
and
(3000 o. (1.16)
Next, for each vector field V normal to M , we put
JV U BVLCV, (1.17)
where BV and CV are respectively the tangent part and the normal part of JV.
We take account of the  decomposition TM [1 DUIDE L1JDU L0 . Obviously,
we  have

UXx OOLD»), Ux OODbY), BVLL(DY) and CV LILI(L), for any X LILI(TM) and
vV OODE 0) . Further, we obtain BL1LILILIQ .

The covariant derivative of [ is defined by

(OxO)Yy OOxOy dO0xY, (1.18)

for any X, Y LILI(TM). On the other hand, the covariant derivative of [ is defined by
(O xHhydOsxdy OdO x Y, (1.19)

for any X, Y L1L1(TM). The exterior derivative of [ is given by

dOX, V) O4Oox0Oy00y00x OO(X, YD}, (1.20)

for any X, Y ULI(TM).

Remark: The more details of exterior derivative is founed in [2]. The Nijenhuis tensor of [ is defined
by [[1, U](X, Y)U[OX, OylOO2[x, YIOO[OX, yiOO[X, 0OY], (1.21)

for any X, Y L1LI(TM), where [X, Y] is the Lie bracket of vector fields X and Y . We define two the

tensor fields S and S” respectively by S(X, Y) O[U, UO](X, YYU2BdU(X, Y), (1.22) and
S'(Y, X)) U @wyHx Oy, Oxjadry, Xxi, (1.23) for any X, Y [L1L1(TM). Definition 1.4([1]).
The CR-submanifold M is said to be normal if

S(X, YYUo, (1.24)

for any X, Y LILI(TM). Definition 1.5. The CR-submanifold M is said to be mixed normal if
S(X, YYUo, (1.25)

for any X L1[1(D), YULI(DY).

2 Main Results

Lemma 2.1. Let M be a quasi Kaehlerian manifold. Then we have

(Ox )Y Oy NX O, JIX, V), (2.1)
2

for any X, YUL(TM).

Proof: For any X, YULI(TM) . From (1.4) and (1.3) we acquire
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[_J, JIX, V)OO xHDY OO vy HX OJOAyNX OJO xJ)Y. (2.2)
Using (2.2), (1.6) and (1.3) we have

I, JIX, V) O (0 xJ)JY OOy)JIX O J(Oy)X O J(O x )Y
0 2J((OyHX OO xNY) . — (23
2.3) follows that (2.1) holds. Q.E.D.

Lemma 2.2. Let M be a quasi Kaehlerian manifold. Then we have

(OuxNHY OO DX O[T, JIX V), (2.4)
2

for any X, Y ULI(TM) . Proof: For any X, Y [1LI(TM) . From (1.6) we get

(O x )Y OO yHX OO sxNJ 2Y O(0 sy )T 2 X

O{@ xXJHJy @y nJx . (2.5)
Using (1.3) in (2.5) we obtain

(O xJHY O v HX OOJ(O x)Y D(OrHNX). (2.6)
(2.4) comes from (2.6). Q.E.D.

Lemma 2.3. Let M be a quasi Kaehlerian manifold. Then we have
(O xO)Y O AoyX O Bh(X, VYHOoxY OOOoxOY

UBhR(LX, OVOUOAoyUX OBOoRExLY, (2.7)
(U x Oy UO0OhX, UOY)UChX, U A(UX, WHOOoxOY

Lch(OXx, Oy)UddAoyOXOCcOoU xOY, (2.8)
for any X L1L1(D), Y OL(TM).
Proof: For any X L1[1(D), Y LI(TM). Using (1.6) and (1.3), we have

(OxJYyOJOxyO@OOxYydJOxJY) Do. (2.9)
Taking into account (1.11), (2.9) becomes
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(Oxdy O xOnOJO xY O0ox Y O J(OoxUOY O0O0oxY) O o . (2.10)
Taking account of (1.8) and (1.9), (2.10) changes into

UxY DX, UY)OAoyX O0O5xOY OJ0OxY LJh(X, YYOOoxY OA(LX, Y)
UJ0OoxdY OJh(0X, OY)OJAoyX OJ0OoBx0Y O o. (2.11)
According to (1.11) and (1.17), (2.11) turns into

OxO0YOAX, OO Aoy X OOBxOY OO0 xY OOO xY O BA(X, Y)YOCh(X, Y)
O0OoxY O h(OX, OUOOoxOY OOOoxOY O BA(OX, OY)OCh(LX, [Y)
OOAoyOX OOAoyOX OBOnRxOAY LCOnExY L o . (2.12)

By comparing to the tangent part and the normal part in (2.12), we get

OxO0Y O Aoy X OO0 xY O Bh(X, YYOOoxY O00oxOY O BR(OX, OY)

OOAoyX OBOoRExOY O o (2.13)

And

h(X, OYOOPxOYy OOOxY OCh(X, VYOA(OX, YYOOOoxOY OChR(OX, OY)
O0AoydX OCOoRxY O o. (2.14)

By (2.13) and (1.18) we have (2.7). Also, by (2.14) and (1.19) we get (2.8). Q.E.D.

Lemma 2.4([1]). Let M be a CR-submanifold of an almost Hermitian manifold M . Then we have
S(X, V) U (Hox)Y O(Coy)X OO{(Oy )X OO x[DH YA B{(H x[D)Y O(Cy) X},
(2.15) for any X, Y ULI(TM).

Lemmaz2.5. Let M be a CR-submanifold of a quasi Kaehlerian manifoldM . Then we have

S(X, Y) O AoyOX O0AoyX OAoxOYOOAoxY O(Oox))Y O(Oow)X) T

0!'0uts, JIX, y)rOlBul, JIX, )0, (2.16)

forhany X, YUU(T™m).
Proof: For any X, Y UJ[1(TM). Taking into account (1.3), (1.11), (1.8), (1.9) and (1.17), we have

(OxHY OO x(AYOOy)OJO xY O (X, Y))

00O xUOY O AX, OO AoyX O0OBxOY

OOOxYUOOxY OBh(X, YYOCh(X, Y). (2.17)

By comparing to the tangent part and the normal part in (2.17), we obtain
(_(D xHY)TO0 xYHAoy X UOO xY UBA(X, Y) (2.18)

and

(_(D xH)Y)E O AX, UOOd=xAdy OO0 xY OCh(X, Y). (2.19)
Combining (1.18) and (2.18), we have
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(OxO)Y OAoyX OBRX, VOO xHY)T. (2.20)
Combining (1.19) and (2.19), we get

(_IZl x)Y OOh(X, OO Ch(X, OO xJ)Y) B. (2.21)
Taking account of (2.20) and (2.21), (2.15) becomes

S(X, Y) 0 AoyOX O(Dox)Y) DAox0dY O((Oow)X)? O0Aoxy OO(OwW)X) T

O0A0vX OO(Ox)Y)T OB(OxJ)Y)E OB(Ow)X)C . (2.22)
Combining (2.22) and (2.1), we obtain our conclusion (2.16).

Theorem2.1. Let M be a CR-submanifold of a quasi Kaehlerian manifold M . Then M is normal if and
only if we have

o 0 AoydX O0AoyX JAoxOYOOAoxYO(Dox)Y O(Oow)X) 7
0loww, A, yrOLBuL, JX, o, (2.23)
2 2
for any X, Y ULI(TM).
Proof: Taking account of Definition 1.4 and Lemmaz2.5, our conclusion holds.  Q.E.D. Corollary2.1.

Let M be a

CR-submanifold of a Kaehlerian manifold M . Then M is normal if and only if we have
AoyX OO0y X O4oxUY O 0O4ox Y U o, (2.24)

for any X, Y LILI(TM). Proof: Since a Kaehlerian manifold M satisfies

_DXJD o, [J; J](Xa Y)DO,
for any X, Y LI[L1(TM), taking account of Theorem2.1, Corollary2.1 holds.  Q.E.D.

a)rollary2.2(Bejiancu[1]). Let M be a CR-submanifold of a Kaehlerian manifold M . Then M is normal
if and only if we have Aoy 1X L[4oy X, (2.25)

for any X L1LI(D), YOIUO(DB) . Theorem2.2. Let M be a CR-submanifold of a quasi Kaehlerian
manifold M

and [J, J](X, YOO, (2.26) forany X, Y
LILI(TM). Then M is normal if and only if we have

ApyX O0OoxYOLI(DR) (2.27)

and

h(X, YYyOOO), (2.28)

for any X L1L1(D), YULI(DY).
Proof: For any X [1[1(D), YULI(DDY) . By using (2.26) in (2.16) we obatin

S(X, V) O AnyOX O0AnyX O(DoxJ)Y) 7. (2.29)
Taking into about (1.8), (1.9), (1.11) and (1.17), (1.3) becomes
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(Oox)Y OOAoyLIX O0O0BPxOY OO0 OoxYU O OoxY OBA(LX, Y)LChR(LX, Y). (2.30)

By comparing to the tangent part and the normal part in (2.30), we get

(Oox))TO0OAcydX O0O00OoxY OBR(OX, Y). (2.31)

From (2.29) and (2.31), we obtain

S(X, V) OOOAoyX O0O0OoxY O BA(OX, Y). (2.32)

Suppose M is normal CR-submanifold of M . For any X [1[1(D), YLILI(DR), then from (2.32) and
Definition1.4 we have [1(AoyX UoxY) O o (2.33)

And Bh(OJX, Y) O o. (2.34)

From (2.33) we obtain (2.27), correspondingly, from (2.34) we get (2.28). Conversely, if (2.27) and
(2.28) are sastified.

Now, we shall prove S [ 0 by means of the decomposition TM [1 DLIDU . First, for any

X OO(D), yO(pov) , from (2.27) we obtain (2.33), correspondingly, from (2.28) we get (2.34).
Taking account of (2.33) and (2.34), (2.32) becomes S(X, Y) 1o, UXULI(D), YULI(DY). Next, for
any X, YULI(D), by

using (2.26), (2.16) changes into S(X, ¥) O (oxHY)T O(OoyH)X)T

O (O xHY OO wHXT . (2.35)

From (2.4) and (2.26), (2.35) becomes S(X, Y) 1o, LX, YULU(D). Finally, for any X, YLILI(DY)
,in

accordance with (2.26), (2.16) changes over S(X, Y) OO AoyX UHAoxY LLI(D) . (2.36)
[JZ (D), on the basis of (2.36), (1.11) and (1.10), we have

g(S(X, V), 2)Ug(00AnvX, 2)Ug(HAoxY, Z)

D g(h(X, UZ2), UV)Ug(h(Yy, Uz), 0Y). (2.37)
Using (2.28) in (2.37), we get
98X, Y), Z)Uo. (2.38)

Thatis, S(X, Y) o, 0OX, YUOO(D).
From the above three conclusions we know S(X, Y) L o, forany X, Y LIL1(TM) . Thus, the CR-

submanifold M is normal. Q.E.D. Theorem2.3. Let M be a CR-submanifold of a quasi Kaehlerian
manifold M

with following conditions satisfing L1xYT1[I1(D)(2.39)

And h(X, YYOIOI(OD, (2.40)

for any X L1[1(D), YULI(DY) .Then M is mixed normal if and only if we have
S*(Y, X) Uo, (2.41)

for any X L1L1(D), YULI(DDY).

Proof: For any X [1[1(D), YULI(DDY) . According to (1.18), (2.15) becomes
S(X, V)UOOOX, Y|O[Ox, YDHUOB(OxHY OB(Oy)X . (2.42)
Taking into account (1.19), (2.8) and BLIC U 0, (2.42) changes into
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S(X, VY)UOUX, yiU[Ux, YDUBh(LX, YYUBUAoyL1X OBOOyX . (2.43)

Taking account of (1.23), (2.40) and BLILILILIQ, (2.43) changes over

S(X, Y)dOs (Y, Xx)UQAoyIX OO QUyX . (2.44)

LUIO(DY) , combining (1.12), (1.10) and (2.40), we have g(QAoyL 1X, U) U g(AoylX, D)
Og(h(OX, U), OY)O o. (2.45)

(2.45) leads to @ApydX O o, OX OO(D), YOO (DB). (2.46)

Combining (2.44) and (2.46), we get S(X, V) OOS(Y, X)OQOy X, OXx OO(D), YOO(DD).
(2.47)

§1ppose M is mixed normal CR-submanifold of M . For any XU1[L1(D), YUILI(DR), then from (2.47)
it follows

0S*(Y, X)Oo (2.48)
and

QlyXUo. (2.49)
Based on (2.48) we obtain

S(Y, Xx)H0O0O(Dm), (2.50)

for any XUILI(D), YUILI(DH) . On the other hand, taking into account (2.39) and (2.49), (1.23)
becomes

Sy, X)) UyOX O0OoxY OONY, X1OLI(D), (2.51)

for any X[1L1(D), YLILI(DU) . Taking account of (2.50) and (2.51), we get that (2.41) holds.
Conversely, if (2.41) is sastified. For any X [1[1(D), YULI(DY) , combinning (1.15) and (1.12), (1.23)
changes into S*(Y, 0UX) O[Y, XxX|OO[Y, OOX] OPY, x1000[y, OOXIOQLY, X]T .
(2.52)

By using (2.41) in (2.52), we have Q[Y, X][1o, UXULI(D), YUO(DY). (2.53)
From (2.53) and (2.39), we obtain QLlyX [1 o, UXOLI(D), YULI(DR). (2.54)
Combining (2.41) and (2.54), (2.47) becomes S(X, Y) o, UOXUOL(D), YUIU(DR). (2.55)
Relying on Definition 1.5, M is mixed normal. Q.E.D.
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