Journal of Statistical and Mathematical Sciences ISSN 3065-100X Volume 12 Issue 4 October-December 2024 Impact Factor: 7.82 Enquiry: contact@continentalpub.online Published by Continental Publication http://continentalpub.online/index.php/jsms # N-COMPONENT PIECEWISE-LINEAR MODELS: ENHANCING ECONOMIC EVENT PREDICTION THROUGH SOFTWARE # Azad Aliyev Doctor of Economical sciences (PhD), Assistant Professor E-mail:azad aliyev **Abstract**: For the last 15 years in periodic literature there has appeared a series of scientific publications that has laid the foundation of a new scientific direction on creation of piecewise-linear economic-mathematical models uncertainty conditions in finite dimensional vector space. Representation of economic processes in finite dimensional vector space, in particular in Euclidean space, at uncertainty conditions in the form of mathematical models in connected with complexity of complete account of such important issues as: spatial in homogeneity of occurring economic processes, incomplete macro, micro and social-political information; time changeability of multifactor economic indices, their duration and their change rate. The above-listed one in mathematical plan reduces the solution of the given problem to creation of very complicated economic mathematical models of nonlinear type. In this connection, it was established in these works that all possible economic processes considered with regard to uncertainty factor in finite-dimensional vector space should be explicitly determined in spatial-time aspect. Owing only to the stated principle of spatial-time certainty of economic process at uncertainty conditions in finite dimensional vector space it is possible to reveal systematically the dynamics and structure of the occurring process. In addition, imposing a series of softened additional conditions on the occurring economic process, it is possible to classify it in finite-dimensional vector space and also to suggest a new science-based method of multivariant prediction of economic process and its control in finite-dimensional vector space at uncertainty conditions, in particular, with regard to unaccounted factors influence. Keywords: Finite-dimensional vector space; unaccounted factors; unaccounted parameters influence function connecting its elements; formulation of conjectures (even if preliminary ones), explaining the behavior and development of the object. ### I. Introduction. Formulation of the problem Development of modern society is characterized by the increase of level, technical complication of organizational structure of production, intensification of social division of labour, making high demands on planning and economic management methods-different optimization models and optimization methods based on the use of mathematical simulation find effective application bv solving practical operational problems. Today, newest achievements of mathematics and up-to-date calculating engineering find wider application in economic investigations and planning. According to the basic conditions, the simulation process stages acquire their specific character. #### 1.1 Statement of economic problem and its quality analysis The given stage means explicit formulization of the problem's essence, accepted assumptions. This stage includes distinction of the most important features and properties of the modeled object and its abstraction from the secondary ones; study of the structure and basic dependences Vol. 12 No. 4 | Imp. Factor: 7.826 DOI: https://doi.org/10.5281/zenodo.14608260 ### 1.2. Construction of mathematical model This stage is the stage of formalization of an economic problem, its expressions in the form of concrete mathematical dependences and relations (functions, equations, inequalities and etc.). Usually, at first the basic construction (type) of a mathematical model is determined, then the details of this construction (concrete list of variables and parameters, connection forms) are specified. It is incorrect to assume that the more facts takes into account a model, the best it "works" and gives best results. We can say the same on such characteristics of complexity of the model as the used forms of mathematical dependences (linear and nonlinear), accounting of accidental nature and uncertainty factors and so on. Superfluous complexity and awkwardness of the model makes difficult the investigation process. It is necessary to take into account not only real possibilities of information and software but also to compare simulation expenditure with the obtained efficiency (by increasing the complexity of the model, increase of expenditures may exceed the efficiency increase). Intercom parison of two systems of scientific knowledges i.e. economic and mathematical ones are realized in the process of construction of the model. It is natural to try to get a model belonging to the well studied class of mathematical problems. Often it is succeeded to do it by simplifying initial premises of the model that don't distort the essential features of the modeled object. However the situation when the formalization of the economic problem reduces to the mathematical structure unknown earlier, is also possible. # 1.3. Mathematical analysis of the mode The goal of this stage is elucidation of general properties of the model. Here truly mathematical investigation methods are used. The most important moment is to prove the existence of solutions in the formulated model (existence theorem). If it turns out well to prove that a mathematical problem has no solution, then the necessity in the subsequent work on the initial variant of the model falls away then either the statement of the economic problem or the ways of its mathematical formalization should be corrected. By analytic investigation of the model such questions as for example, if the solution is unique, which variables (unknown ones) may appear in the solution, what relations will be between them, in what limits and under which initial conditions they change, what tendencies of their change and etc. Analytic investigation of the model compared with empiric (numerical) one has the advantage that the obtained conclusions remain valid for different concrete values of external and internal parameters of the model. As the economic-mathematical simulation develops and gets complicated, its separate stages are isolated into specialized investigation fields, the difference between theoreticalanalytical and applied models increases, differentiation of models by the levels of abstraction and idealization happens. Theory of mathematical analysis of economics models has been developed into a special branch of contemporary mathematics to mathematical economics. The models studied within mathematical economics loose direct connection with economic reality; they exceptionally deal with idealized economic objects and situations. By constructing such models, the chief principle is not so much approximation to reality as to obtain a possible great number of analytic results by means of mathematical proofs. The value of these models for economic theory and practice is that they serve as a theoretical basis for applied type models. Preparation and processing of economic information and development of software of economic problems (creation of data base and information banks, program of computer-aided construction of models and program service for economists-users) become independent fields of investigations. # 1.4. Preparation of input information Simulation presents rigid requirements to the information system. At the same time, real possibilities of information receipt restricts the choice of models intended for practical use. Not only principal possibility of information preparation (for certain periods) but also expenditures for preparation of appropriate information areas is taken into account. These expenditures should not exceed the efficiency from the use of additional information. The methods of probability theory, theoretical and mathematical statistics are widely used in the course of preparation of information. Under system Vol. 12 No. 4 | Imp. Factor: 7.826 DOI: https://doi.org/10.5281/zenodo.14608260 economic-mathematical simulation the initial information used in one models, is the result of functioning of other models. ### 1.5. Numerical calculation In this stage, the algorithms for numerical solution of the problem are worked out, the programs in ECM are composed and calculations are conducted. Difficulties of this stage are stipulated first of all by the great size of economic problems, by necessity of processing of considerable information areas. Usually, calculations on economic-mathematical model are of multivariant character. Owing to high speed of contemporary ECM we can conduct numerous "model" experiments studying "behavior" of the model under different changes of some conditions. The investigations conducted by numerical methods may essentially complement the results of analytic investigation, and for a lot of models it is a uniquely realizable one. ### 6. Analysis of numerical results and their application On the final stage their arises a question on correctness and completeness of simulation, on degree of practical applicability of the latters. Mathematical verification methods may elucidate incorrect constructions of the model and by the same token contract the class of potentially tame models. Informal analysis of theoretical conclusion and numerical results obtained by means of the model, their comparison by the available knowledges and facts of reality also allow to reveal the short-comings of the economic problem statement, constructed mathematical model and its software. Introduction of computer-aided systems of economic information processing allows to lower essentially the expenditures connected with data processing, to increase labour productivity of the labour of the workers in the field of economics,
improve relations between different subdivisions of enterprises. At present, there is a great mass of software intended for application in the field of economics, but regretfully, often it is necessary to "adjust" the readymade software under individual features of the enterprise even if these programs stood the test by time. However, the arising difficulties of calculating character require the creation of special software for computer programming and creation of an action algorithm for economic processes at uncertainty conditions in finite-dimensional vector space. In this connection, in [1,2,7,13-15], by means of 2-component piecewise linear economic-mathematical models with regard to unaccounted factors a special program is developed for computer modeling for numerical construction and definition of multivariant prediction quantities of economic event in many-dimensional vector space, in particular, in two, three and four-dimensional vector spaces. The scientific results obtained in these works compose necessary theoretical and calculation instrument for creating a principally new, perspective software for computer modeling by constructing and multivariant prediction of economic state by means of piecewise linear economicmathematical models with regard to unaccounted factors influence in m –dimensional vector space. In this article, the developed software algorithms for constructing two-component piecewise-linear model and for multivariant prediction of economic event at uncertainty conditions in m-dimensional vector space will be stated on the base of the Matlab program, and a number of numerical examples will be given. A packet of programs will be suggested, a numerical analysis of multivariant prediction of economic event at uncertainty conditions will be suggested. ### II. Materials and methods. Development of software for computer modeling and multi-variant prediction of economic event at uncertainty conditions on the base of 2-component piecewise-linear economic-mathematical models in m– dimensional vector space ### 2.1. Actions algorithm for computer modeling by constructing 2-component piecewiselinear economicmathematical models In this article, on the basis of the Matlab program we'll suggest an algorithm and numerical calculation method for numerical construction of 2-component piecewise-linear economic-mathematical models in mdimensional vector space. It should be noted that the Matlab program has its restrictive properties Vol. 12 No. 4 | Imp. Factor: 7.826 DOI: https://doi.org/10.5281/zenodo.14608260 that compels us to introduce some additional denotation and adhere to certain proper sequence in calculation operations. According to the suggested theory [1-4,6-9,11,13-15], for the case of 2-component piecewise-linear vector function in mdimensional vector space we write the min equations and mathematical expressions that are subjected to numerical programming. | Let in m-dimensional vector space R_m a statistical table describing some economic process in the form of \square | |--| | points (vectors) set $\{a_n\}$ be given. Let these points be represented in the form of adjacent 7-component piecewise linear vector equation of the form: | | American Review of Mathematics and Statistics, Vol. 7, No. 1, June | | 2019 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | where $z \square z$ ($z \neg z \neg z$) and $z \square z$ ($z \neg z \neg z$) are the equations of the first and second | | where $z_1 \square z_1(z_{11},z_{12},z_{13},z_{1m})$ and $z_2 \square z_2(z_{21},z_{22},z_{23},z_{2m})$ are the equations of the first and second \square piecewise-linear straight lines in m-dimensional vector space. The vectors $a_1(a_{11},a_{12},a_{13},,a_{1m})$, | | | | $a_2 \square a_2(a_{21},a_{22},a_{23},,a_{2m})$ and $a_3 \square a_3(a_{31},a_{32},a_{33},,a_{3m})$ are the given points (vectors) in m-dimensiona | | space, of the form: | | a1 □ a11i1 □a12i2 □a13i3 □□a1mi m, | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | a3 □ a31i1 □a32i2 □a33i3 □□a3mi m
□□ ^{k1} □ | | Here $\mu_1 \ge 0$ and $\mu_2 \ge 0$ are arbitrary parameters, z_1 is the intersection point of the straight lines z_1 | | \square and \mathbf{z}_2 . | | The goal of the investigation is the following. Giving the approximative points a_1 , a_2 , a_3 and also the | | values of the parameters $\mu_1^{k_1} \square \mu_1^*$ and $\mu_2^* \square \mu_2^*$ to develop a computer calculation algorithm of the | | following equations and mathematical expressions in m-dimensional vector space: $z \square \square 1k1 \square a \square$ | | $\Box \Box 1k1 (a \Box 2 - a \Box 1)$ | | (a $12 \square \square \square k1$)2 $k k k 3 \square z1$ | | $ \Box 1 \Box \Box \Box \Box \Box k l) 2 k k k 3 \Box z l $ $ \Box 1 \Box \Box 1 \Box \Box 2 (a \Box \Box \Box z k l) (a \Box 2 \Box a \Box 1) $ | | <u> </u> | | $z \square \square 1k2 \square a \square 1 \square \square 1k2 (a \square 2 - a \square 1) z \square k2 \square z \square 1k1 \square (\square 1k2 \square \square 1k1) (a \square 3 \square (a \square z \square \square_3 1k \square 1) (z \square_1 a \square k13) \square 2 a1) (a \square 3 \square z \square 1k1) 2 \square \square (z1k2 - z \square 1k1) (z \square 1k2 - z \square 1 k1)$ | | $cos \Box 1,2 \Box z \Box k 2 - z \Box 1 \overline{k} 1 z \Box 1 \overline{k} 2 z \Box 1 \overline{k} 1$ | | 1 $k1 - \Box 1k2$) $a \Box z \Box 2 k - 2a(\Box 1z \Box 1kz \Box \Box 11k - 1a \Box - 1a \Box)1$ | | $A \square (\square 1 \qquad \qquad \square 2 \square 2 \square 2 \square 2 \square \square \square \square \square \square \square \square \square \square$ | | Copyright: © 2024 Continental Publication | Vol. 12 No. 4 | Imp. Factor: 7.826 DOI: https://doi.org/10.5281/zenodo.14608260 $\square 2k2 \ z \square \square 1k2 \ -z \square 1k1 \ a \square 3 \ -z \square 1k1 \ z \square 1k2 (z \square 1k1 \ -a \square 1) \square 2 \square \square k1 \ -\square 2k2 \square z \square 1k2 (z \square 1k2 \ -z \$ $z \square 1k1$) $\square a \square 2 - a \square 1z \square 1k1 - a \square 1$ $\Box 2 (\Box 2, \Box 1, 2) \Box \Box 2cos \Box 1, 2$ $\square \square z \square \square 2 \square z 1k2\{1 \square A[1 \square \square 2 (\square 2, \square 1, 2)]\}$ $z_1 \square a_1 \square \square_1 (a_2 - a_1)$ $(\Box_1 \Box \Box_1^{k_1}) \Box (a_3 \Box (a \Box z_3 1 k \Box 1)(z \Box a \Box k_{12}) \Box 2 a \Box 1)$ $\square_2 \square$ $\square 2 \square 1 \square 1^{k_1} - a \square \square 1 a - a_i z$ $A(\Box 1) \Box (\Box 1k1 \Box \Box 1) z \Box_1(z \Box k1 a \Box 1)$ $\square_2(\square 1) \square k\square 1 -2\square 1 \square z\square 1z\square -1z\square\square(1kz\square 1 1 -a\square z\square 31k-1z\square)1k 1 \square a\square 2z\square 1 (a \square z \square 11k1z \square 1-k 1a \square 1-) a \square 1$ $\square_2(\square_1) \square \square_2(\square_1) Cos \square_{1,2}$ (4) $Z_2(\square_1) \square Z_1\{1\square A(\square_1)[1\square \square_2(\square_1)]\}$ Introduce the following denotation: \square 1 \square m1: \square 1 \square $z^{\square_2 k_2} \square z_2 k_2; z^{\square_1} \square z_1; \square_2 \square m_2; \square_2^{k_2} \square m_2 k_2, A(\square_1) \square Am_1,$ $\square_2 \square La2, \square_2(\square_1) \square La2m1;$ $\square \square \square_2(\square_2,\square_{12}) \square \square_2(\square_1) \square w2m1, Z_2 \square Z_2, Z_2(\square_1) \square Z2m1.$ (5)Using the introduced denotation (5), for the system (4) compose a program for numerical construction of 2component piecewise-linear economic-mathematical models with regard to unaccounted factors influence in mdimensional vector space in the Matlab program in the following form [1,2,7,13-15]: $a1=[a11 \ a12 \ a13 \ ...a1m] \ a2=[a21 \ a22 \ a23 \ ...a2m] \ a3=[a31 \ a32 \ a33 \ ...a3m]$ m1k1=(m1)* m2k2=(m2)* for m1=J1: J2:J3 $z_1k_1=a_1+m_1k_1*(a_2-a_1);$ m1k2=m1k1+m2k2*((a3-z1k1)*(a3-z1k1)')/ $((a_3-z_1k_1)^*(a_2-a_1)');$ $z_1k_2=a_1+m_1k_2^*(a_2-a_1);$ $z_2k_2=z_1k_1+(m_1k_2-m_1k_1)*((a_3-z_1k_1)*(a_2-a_1)')/((a_3-z_1k_1)*(a_2-a_1)')$ cosa12=((z1k2-z1k1)*(z2k2-z1k1)')/(sqrt((z1k2z1k1)*(a3-z1k1)')*(a3-z1k1); -z1k1)*(z1k2z1k1)')*sqrt((z2k2-z1k1)*(z2k2-z1k1)')) $A=(m_1k_1-m_1k_2)*(sgrt((a_2-a_1)*(a_2-a_1)')*sgrt((z_1k_1-a_1)*(z_1k_1-a_1)'))/(z_1k_2*(z_1k_1-a_1)');$ p1=m2k2/(m1k1-m1k2); $p2 = (sqrt((z_1k_2-z_1k_1)*(z_1k_2-z_1k_1)')*sqrt((a_3-z_1k_1)*(a_3-z_1k_1)'))/(z_1k_2*(z_1k_2-z_1k_1)');$ $p_3 = (z_1k_2*(z_1k_1-z_1k_1))$ a1)')/(sqrt((a2-a1)*(a2-a1)')*sqrt $((z_1k_1-a_1)^*(z_1k_1-a_1)^*); La_2=p_1^*p_2^*p_3; w_2=La_2^*cosa_12; z_2=z_1k_2^*(1+A^*(1+w_2)); z_1=a_1+m_1^*(a_2-a_1)$ m2=(m1-m1k1)*(((a3-z1k1)*(a2-a1)')/((a3-z1k1)*Am1=(m1k1-m1)*(sqrt((a2-a1)*(a2-a1)')*sqrt((z1k-a1)*(z1k1-a1)'))/(z1*(z1k1-a1)')p1m1=m2/(m1k1m1); $\Box\Box k_1$)0 Vol. 12 No. 4 | Imp. Factor: 7.826 p2m1=(sqrt((z1-z1k1)*(z1-z1k1)')*sqrt((a3-z1k1)*(a3-z1k1)'))/(z1*(z1-z1k1)'); p3m1=(z1*(z1k1-a1)')/(sqrt((a2-a1)*(a2-1)')*sqrt((z1k1-a1)*(z1k1-a1)')); La2m1=p1m1*p2m1*p3m1; w2m1=La2m1*cosa12 z2m1=z1*(1+Am1*(1+w2m1)) end (6) # 2.2. Algorithm of multivariant computer modeling of prediction variables of economic event on the base of # 2-component piecewise-linear economic-mathematical models In this section we suggest a software algorithm for multivariant prediction of economic event at uncertainty conditions on the base of 2-component piecewise-linear economic-mathematical model in m-dimensional vector space. For the case of 2-component piecewise-linear vector function at uncertainty conditions in m-dimensional space on the base of the Matlab program we represent an algorithm and numerical
program for multivariant prediction of economic event. According to the theory [1,2,7,13-15] for the case of 2-component piecewise-linear vector-function at uncertainty conditions in m-dimensional vector space we have the following equations and relations for multivariant prediction of the economic event: | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | |--| | $\begin{pmatrix} a & k & k & 3 \square z_1 \end{pmatrix}$ | | $\Box_1 \Box_{\Box_1} \Box_{\Box_2} (a \\ \ominus_3 \Box z \\ \ominus_1 k_1) (a \\ \ominus_2 \Box a \\ \ominus_1)$ | | $z \square \square 1k2 \square a \square 1 \square \square 1k2 (a \square 2 - a \square 1)$ | | $\Box k2 = z \Box 1k1 \Box (\mu 1k2 - \mu 1k1) (a \Box 3 - \Box z \Box \Box 1k1) (\Box a \Box 2 - a \Box \Box 1) (a \Box 3 - z \Box 1k1)$ z2 | | | | $(a_3 - z_1^{k_1})^2 \cos \alpha_{1,2} = \frac{(\vec{z}_1^{k_2} - \vec{z}_1^{k_1})(\vec{z}_2^{k_2} - \vec{z}_1^{k_1})}{\left \vec{z}_1^{k_2} - \vec{z}_1^{k_1}\right \cdot \left \vec{z}_2^{k_2} - \vec{z}_1^{k_1}\right }$ | | $A(\mu_1^{k_2}) = A = (\mu_1^{k_1} - \mu_1^{k_2}) \frac{\left \vec{a}_2 - \vec{a}_1 \right \left \vec{z}_1^{k_1} - \vec{a}_1 \right }{\vec{z}_1^{k_2} \left(\vec{z}_1^{k_1} - \vec{a}_1 \right)}$ | | $\lambda_2(\mu_1^{k_2}) = \lambda_2^{k_2} = \frac{\mu_2^{k_2}}{\mu_1^{k_1} - \mu_1^{k_2}} \cdot \frac{\left \vec{z}_1^{k_2} - \vec{z}_1^{k_1} \right\ \vec{a}_3 - \vec{z}_1^{k_1}}{\vec{z}_1^{k_2} (\vec{z}_1^{k_2} - \vec{z}_1^{k_1})} \cdot \frac{\vec{z}_1^{k_2} (\vec{z}_1^{k_1} - \vec{a}_1)}{\left \vec{a}_2 - \vec{a}_1 \ \vec{z}_1^{k_1} - \vec{a}_1 \right }$ | | $ \omega_{2}(\lambda_{2}^{k_{2}}, \alpha_{1,2}) = \lambda_{2}^{k_{2}} \cos \alpha_{1,2} \\ z \square \square 2 (\square 1k2) \square z \square 2 = z \square 1k2\{1 + A [1 + \omega_{2} (\lambda_{2}k_{2}, \alpha_{1}, 2)]\} \\ \square \square \square \square \square \square \square \\ z_{1}(\square_{1}) \square z_{1} \square a_{1} \square \square_{1}(a_{2} - a_{1}) $ | | | | $-\Box_{1}) a\Box_{2z}\Box_{1}-(a\Box_{z}\Box_{11}_{k1z}\Box_{-1k}1a\Box_{1}-)a\Box_{1} A(\Box_{1})\Box_{1}\Box_{1}$ | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | $(\Box 1) \Box \Box_1 k \Box 1 - 2 \Box 1 \Box z_1 z \Box - 1 z (_1 z \Box 1 \ 1 - z \Box 31 k1 \) 11 \Box a \Box 2 z 1 - (a \Box z 11 k \Box z \Box - 1 k 1 a \Box 1 -) a \Box 1 \Box a \Box 2 z 1 - (a \Box z 11 k \Box z \Box - 1 k 1 a \Box 1 -) a \Box 1 \Box a \Box 2 z 1 - (a \Box z 11 k \Box z \Box - 1 k 1 a \Box 1 -) a \Box 1 \Box a \Box 2 z 1 - (a \Box z 11 k \Box z \Box - 1 k 1 a \Box 1 -) a \Box 1 \Box a \Box 2 z 1 - (a \Box z 11 k \Box z \Box - 1 k 1 a \Box 1 -) a \Box 1 \Box a \Box 2 z 1 - (a \Box z 11 k \Box z \Box - 1 k 1 a \Box 1 -) a \Box 1 \Box a \Box 2 z 1 - (a \Box z 11 k \Box z \Box - 1 k 1 a \Box 1 -) a \Box 1 \Box a \Box 2 z 1 - (a \Box z 11 k \Box z \Box - 1 k 1 a \Box 1 -) a \Box 1 \Box 2 \Box 1 \Box 2 \Box 2 \Box 1 \Box 2 \Box 2 \Box 2 \Box 2$ | $a \square \square 1 k_1 \square a \square 1 \square \square 1 k_1 (a \square 0, a \square 1)$ | $\square_2(\square_2(\square_1),\square_{12}) \square \square_2(\square_1) \square \square_2(\square_1) \cos \square_{1,2}$ | Vol. 12 No. 4 Imp. Factor: 7.826 | |---|---| | $Z_{2}(\square_{1})=Z_{1}\left\{1+A(\square_{1})\left[1+\omega_{2}(\square_{1})\right]\right\}$ | | | \square m \square $a4$ \square $a4jij$ $j\square 1$ $a42(1)$ \square $(a\square 4)$ 2 \square $z22k$ 2 \square 2 2 2 2 2 2 2 2 2 2 | | | | | | $a44\Box 1\Box \Box (a\Box 4)4\Box z24k2\Box a \underline{24}\Box a \underline{14}(a41\Box 1\Box \Box z21k2) a21\Box a$ | 11 | | $a4m \Box 1 \Box \Box (a \Box 4)m$ $(a41\Box 1\Box \Box z21k2) a21 \Box a 11$ $\Box \Box \Box (a \Box 2 (\Box a \Box a \Box \Box_{31} \Box)(\Box ak31 \Box)2z1k1)$ | \square z2km2 \square a 2m \square a 1m | | $\overline{z_1}$ \square $q_2 \square (a_3 \square (a \square z_4 1 k(11)()a \square \square 4 z \square (1_2 k)2) \square 2 z \square 2 k2)$ | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |]) a □ 1 | | $ \Box 3(\Box 1) \Box k1 3 \Box q3 \Box q 4 \Box 1 \Box \Box 1 $ $ cos \Box 2,3 \Box (z \Box z2 \Box (2 \Box (\Box 1) 1) \Box z\Box \Box 2 \Box k2k)2 \Box a(\Box a4 \Box (41() 1) \Box z\Box $ $ z_2 $ | $]\Box z\Box z 2\Box k 2\;2k 2\;\;)$ | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | :a1□1□)a□□1 | | the values of parameters $\Box_1 k1 \Box \Box_1^*$ and $\Box_2 k2 \Box \Box_2^*$.
Give the approximative points $Z_3(\Box_1) \Box Z_3 m1p$; $Z_3(\Box_1)\Box Z_3 m1pM$; | \square_2 , $a\square_3$, $a\square\square_4$ (1) and also | | $Z_1(\square_1)/Z_3(\square_1)$ $\square(z_1M)/(z_3m_1pM)$ \square $B_1;$ Copyright: © 2024 Continental Publication | | Vol. 12 No. 4 | Imp. Factor: 7.826 ``` z_2(\square_1)/Z_3(\square_1)\square(z_2m_1M)/(z_3m_1pM)\square B_2; z_1(\square_1)/z_2(\square_1)\square(z_1M)/(z_2m_1M)\square B_3; For the general m-dimensional case we write the symbolic representation of relations of the vectors in the following compact form: z_i(\square)/z_j(\square)\square(z_i(\square))/(z_jm_1\square(\square))\square B_{ij}(\square) (9) Here the indices i and j (i, j \square 1, 2, 3) indicate the number of the vector z_i the index \square the coordinate of the vector \Box \Box z_i. And in m-dimensional case \Box takes integer values \Box \Box 1,2,3,...m. Using the introduced denotation (8)-(9), the algorithm and approximate numerical program for the system (7) in the Matlab language will be represented in the form: a1=[a11 \ a12 \ a13 \ a14... \ a1\square...a1m] a2=[a21 \ a22 \ a23 \ a24...a2\square...a2m] a3=[a31 \ a32 \ a33] a34...a3\square...a3m m_1k_1=(m_1)^* m_2k_2=(m_2)^* a_4(1)=a_4(1)^* for m_1=J_1:J_2:J_3 z_1k_1=a_1+m_1k_1^* (a2-a1); m_1k_2=m_1k_1+m_2k_2*((a_3-z_1k_1)*(a_3-z_1k_1)')/((a_3-z_1k_1)*(a_2-a_1)'); z_1k_2=a_1+m_1k_2*(a_2-a_1); z_2k_2=z_1k_1+(m_1k_2-m_1k_1)*((a_3-z_1k_1)*(a_2-a_1)')/((a_3-z_1k_1)*(a_3-z_1k_1)')*(a_3-z_1k_1); \cos a_{12} = ((z_1k_2 - z_1k_1)^*(z_2k_2 - z_1k_1)')/(s_qrt((z_1k_2 - z_1k_1)^*(z_1k_2 - z_1k_1)')^*s_qrt((z_2k_2 - z_1k_1)^*(z_2k_2 - z_1k_1)')); A=(m_1k_1-m_1k_2)*(sgrt((a_2-a_1)*(a_2-a_1)')*sgrt((z_1k_1-a_1)*(z_1k_1-a_1)'))/(z_1k_2*(z_1k_1-a_1)'); p1=m2k2/(m1k1-m1k2); p2 = (sqrt((z_1k_2-z_1k_1)*(z_1k_2-z_1k_1)')*sqrt((a_3-z_1k_1)*(a_3-z_1k_1)'))/(z_1k_2*(z_1k_2-z_1k_1)'); p_3=(z_1k_2*(z_1k_1-a_1)')/(s_qrt((a_2-a_1)*(a_2-a_1)')*s_qrt((z_1k_1-a_1)*(z_1k_1-a_1)')); La2=p1*p2*p3; w2=La2*cosa12; z2=z1k2*(1+A*(1+w2)) z1=a1+m1*(a2-a1) z1M=sqrt((z1)*(z1)') m2=(m1-m1k1)*(((a3-z1k1)*(a2-a1)')/((a3-z1k1)* (a3-z1k1)')) Am1=(m1k1-m1)*(sqrt((a2-a1)*(a2-a1)')*sqrt((z1k1-a1)*(z1k1-a1)'))/(z1*(z1k1-a1)'); p1m1=m2/(m1k1-a1)') p2m1=(sqrt((z_1-z_1k_1)^*(z_1-z_1k_1)')^*sqrt((a_3-z_1k_1)^*(a_3-z_1k_1)'))/(z_1^*(z_1-z_1k_1)'); p_3m_1=(z_1*(z_1k_1- a1)')/(sqrt((a2-a1)*(a2-a1)')*sqrt((z1k1-a1)*(z1k1-a1)')); La2m1=p1m1*p2m1*p3m1; w2m1=La2m1*cosa12; z_{2m1}=z_{1}*(1+Am_{1}*(1+w_{2m_{1}})) z2m1M=sqrt((z2m1)*(z2m1)') a_4(2)=z_2k_2(2)+[(a_2(2)-a_1(2))/(a_2(1)-a_1(1))]* (a4(1)-z2k2(1)); a4(3)=z2k2(3)+[(a2(3)-a1(3))/(a2(1)-a1(1))]* (a4(1)-z2k2(1)); a_4(4)=z_2k_2(4)+[(a_2(4)-a_1(4))/(a_2(1)-a_1(1))]* (a4(1)-z2k2(1)); q1=[(a2-a1)*(a3-z1k1)']/[(a3-z1k1)*(a3-z1k1)']; q2=((a3-z1k1)*(a4-z2k2)')/((a4-z2k2)*(a4-z2k2)'); m3=(m1-m1k2)*q1*q2 q3=(sqrt((z2m1-z2k2)*(z2m1-z2k2)')*sqrt((a4-z2k2)*(a4- -z2k2)'))/(z1*(z2m1-z2k2)'); q4=[z_1*(z_1k_1-a_1)']/[sqrt((a_2-a_1)*(a_2-a_1)')*sqrt((z_1k_1-a_1)*(z_1k_1-a_1)')]; La_3m=[m_3/(m_1k_1-m_1)]*q_3*q_4; cosa23=((z2m1-z2k2)*(a4-z2k2)')/[sqrt((z2m1-z2k2)* (z2m1-z2k2)')*sqrt((a4-z2k2)*(a4-z2k2)')]; ``` | Am1p=(m1k1-m1)*(sqrt((a2-a1)*(a2-a1)')*sqrt((z1l | Vol. 12 No. 4 Imp. Factor: 7.826
k1-a1)*(z1k1-a1)'))/(z1*(z1k1-a1)'); | |---|---| | w3mp=La3m*cosa23;
z3m1p=z1*[1+Am1p*(1+w2m1+w3mp)] z3m1pM=
B1=(z1M)/(z3m1pM)
B2=(z2m1M/(z3m1pM))
B3=(z1M)/(z2m1M)
B4=(z1(1))/(z3m1p(1))
B5=(z2m1(1))/(z3m1p(1))
B6=(z1(1))/(z2m1(1))
B7=(z1(2))/(z3m1p(2))
B8=(z2m1(2))/(z3m1p(2))
B9=(z1(2))/(z2m1(2))
B10=(z1(3))/(z3m1p(3))
B11=(z2m1(3))/(z3m1p(3))
B12=(z1(4))/(z3m1p(4))
B14=(z2m1(4))/(z3m1p(4))
B15=(z1(4))/(z2m1(4)) | sqrt((z3m1p)*(z3m1p)') | |
B _{ij} (□) □ (zi(□))/(zjm1□(□)) | | | the above-suggested numerical program we caprediction of economic event at uncertainty conditions of model in
m-dimensional vector space. In the suvariants and examples. Development of software for computer economic event at uncertainty conditions of economic-mathematical models in 3dimense. 2.3. Action algorithm for computer modelilinear economicmathematical models in 3-continuation of 2-component piecewise-linear unaccounted factors influence in 3-dimensional econcrete numerical example. For the case of 2- | ng by constructing 2-component piecewise- | | | the form of the points (vectors) $\{a_n\}$ set describing ts be represented in the form of the points set of ation of the form [1,2,5,7,10,12,13-17]: | | $egin{array}{llllllllllllllllllllllllllllllllllll$ | (2.3.1)
(2.3.2)
he equations of the first and second piecewise-linear | | where $z_1 \sqcup z_1(z_{11},z_{12},z_{13})$ and $z_2 \sqcup z_2(z_{21},z_{22},z_{23})$ are the Copyright: © 2024 Continental Publication | ne equations of the first and second piecewise-illiear | Vol. 12 No. 4 | Imp. Factor: 7.826 straight lines in 3-dimensional vector space. The vectors $a_1(a_{11},a_{12},a_{13})$, $a_2 \square a_2(a_{21},a_{22},a_{23})$ and $\Box \Box a_3 \Box a_3(a_{31}, a_{32}, a_{33})$ are the given points (vectors) in 3-dimensional space of the form: \square a1 \square a11i1 \square a12i2 \square a13i 3 $a_2 \square a_{21}i_1 \square a_{22}i_2 \square a_{23}i_3$ (2.3.3)a3 □ a31i1 □a32i2 □a33i 3 Here $\mu_1 \ge 0$ and $\mu_2 \ge 0$ are arbitrary parameters, $z_1^{k_1}$ is the intersection point of the straight lines $z\Box_1$ and $z\square_2$. The goal of the investigation is the following. Giving the approximative point a_1 , a_2 , a_3 and also the value of the parameters $\mu_1^{k_1} \square \mu_1^*$ and $\mu_2^* \square \mu_2^*$, develop a computer calculation algorithm for the following equations and mathematical expressions: $\Box \Box z_{1k1} \Box a \Box \Box \Box k_1 (a \Box z_{-a} \Box z_{-a})$ $\Box\Box\Box$ $\Box k$ (a $\Box 1k2 \quad \Box \Box 1k1 \quad \Box \Box 2k2 \quad (a \Box_3 \Box 3k1 \Box)(za1 \Box 12) \Box a \Box 1)$ $z_1 k_2 \square a \square \square_1 \square \square 1k_2 (a \square_2 - a \square_1)$ $\Box \Box z k$ (a $2 \supseteq \Box z \Box 1k1 \Box (\Box 1k2 \Box \Box 1k1) (a \Box 3 \Box \Box z \Box \Box 31k \Box 1) (z \Box 1a \Box k13 \Box 2 a1) (a \Box 3 \Box z \Box 1k1)$ $(z \square \square 1k2 - z \square 1k1)(z \square 1k2 - z \square 1 k1) \cos \square 1,2 \square z \square k2 - z \square 1k1 z \square 1k2 z \square 1 k1$ $a\square 2 - a\square 1 \square \square \square 1 k 1 - a\square \square 1$ $A \square (\square 1k1 - \square 1k2)_{\parallel} z \square_1 k2 (z \square 1k1 - a \square 1)$ $\square 2k2 \ z \square \square 1k2 - z \square 1k1 \ a \square 3 - z \square 1k1 \ z \square 1k2 (z \square 1k1 - a \square 1)$ $z \square 1k2 (z \square 1k2 \mid -z \square 1k1) \square a \square 2 - a \square 1z \square 1k1 - a \square 1$ $\square_2 \square \square_1 k_1 - \square_2 k_2 \square$ $\Box 2 (\overline{\Box 2}, \overline{\Box 1}, 2^{\dagger}) \quad \overline{\Box \Box 2cos \Box 1}, 2^{\dagger}$ $\square \square^{k_2} \{ 1 \square A [1 \square \square_2 (\square_2, \square_{1,2})] \} Z_2 \square Z_1$ $z_1 \square a_1 \square \square_1 (a_2 - a_1)$ $(a \square 2 \square (\square 1 \square \square 11 \square \square 3 \square (a \square z \square \square_3 1k \square 1)(z \square_1 a \square k 12) \square 2 a \square 1)$ k)) $a \square 2z \square_1 - (a \square z \square 1_1 k_1 z \square \square 1 k_1 a \square -_1) a \square 1$ $A(\square_1) \square (\square_1 \square \square_1)$ $(\Box 1) \Box \Box \frac{1}{1} k \Box 1 -2 \Box 1 \Box z \Box 1z \Box -1z \Box \Box (1kz \Box 1 \ 1 \ -a \Box z 3 \Box 1k -1z \Box) 1k \ 1$ $\Box a = 2z \Box 1$ $(a \rightarrow z \square 11k1z \rightarrow 1-k 1a \square 1-) a \rightarrow 1 \square 2$ Copyright: © 2024 Continental Publication $\square(\square_1)$ \square $\square_2(\square_1)$ cos \square_1 | _ | | VOI. 1 | Z NO. 4 | r 11111 | p. ractor: 7.020 | |--|---|---|--------------|-----------|------------------------| | \Box $\mathbf{z}_2(\Box_1)$ | \square $\square Z_1\{1\square A (\square_1)[1\square \square_2 (\square_1)]\}$ | (2.3.4) | | | | | \Box k $\Box Am_1$ $\Box_2 \Box_1$ | $m_1k_2 \square \square \square_1 \ 2 \square ; z_1k_1 \square z_1k_1; z \square 1k_2 \square ; z_1 \square z_1; \square_2 \square m_2; \square_2 \square $ $La_2; \square_2(\square_1) \square La_2m_1;$ $La_2, \square_1 \square_2(\square_1) \square w_2m_1;$ | $a_3\square a_3;\square_1\square m$ 1; $\square_1\square$ $ z_1k_2;z\square 2k_2\squarez_2k_2;\square\square$ | | k2 | $m2k2;A(\square_1)$ | | Using in | the introduced denotation (2.3.5), the approxical construction of 2-component piecewise ecounted factors influence in 3-dimensional | -linear economic-mathemat | tical m | nodel | ls with regard | | | 1 a12 a13] a2=[a21 a22 a23] a3=[a31 a3: | 2 a33] m1k1=(m1)* m2k2= | (m2)* | ÷ | | | m1k2=
z2k2=z
cosa12
A=(m1 | =J1: J2 :J3 z1k1=a1+m1k1*(a2-a1);
m1k1+m2k2*((a3-z1k1)*(a3-z1k1)')/((a3-z1k
z1k1+(m1k2-m1k1)*((a3-z1k1)*(a2-a1)')/((a3
=((z1k2-z1k1)*(z2k2-z1k1)')/(sqrt((z1k2-z1k1)k1-m1k2)*(sqrt((a2-a1)*(a2-a1)')*sqrt((z1k1-k2/(m1k1-m1k2); | -z1k1)*(a3-z1k1)')*(a3-z1k1)
1)*(z1k2-z1k1)')*sqrt((z2k2- |);
z1k1)* | (z2k | 2-z1k1)')) | | p2=(sc
p3=(z1
w2=La | rt((z1k2-z1k1)*(z1k2-z1k1)')*sqrt((a3-z1k1)*
k2*(z1k1-a1)')/(sqrt((a2-a1)*(a2-a1)')*sqrt((
2*cosa12; z2=z1k2*(1+A*(1+w2)); z1=a1+m
n1-m1k1)*(((a3-z1k1)*(a2-a1)')/((a3-z1k1)* | z1k1-a1)*(z1k1-a1)')); | (1)'); | La | a2=p1*p2*p3; | | | m1k1-m1)*(sqrt((a2-a1)*(a2-a1)')*sqrt((z1k1 | -a1)*(z1k1-a1)'))/(z1*(z1k1-a | 11)') | p1m | 1=m2/(m1k1- | | p2m1=
a1)')/(s | e(sqrt((z1-z1k1)*(z1-z1k1)')*sqrt((a3-z1k1)*(a
sqrt((a2-a1)*(a2-1)')*sqrt((z1k1-a1)*(z1k1-a1)
=p1m1*p2m1*p3m1; w2m1=La2m1*cosa12 | | | р31 | m1=(z1*(z1k1- | | | =z1*(1+Am1*(1+w2m1)) end | | (2 | .3.6) | | | the par
a1=[1 1 | Imple: As an example we give the following rameters $\mu_1^{k_1}$ and $\mu_2^{k_2}$ have the following nunl; $\mu_1^{k_1}$ and $\mu_2^{k_2}$ have the following nunl; $\mu_2^{k_1}$ and $\mu_2^{k_2}$ have the following nunl; $\mu_2^{k_1}$ and $\mu_2^{k_2}$ have the following nunl; $\mu_2^{k_1}$ and $\mu_2^{k_2}$ and $\mu_2^{k_2}$ and $\mu_2^{k_1}$ and $\mu_2^{k_2}$ and $\mu_2^{k_1}$ and $\mu_2^{k_2}$ are the following nunl $\mu_2^{k_1}$ and $\mu_2^{k_2}$ and $\mu_2^{k_2}$ are the following nunl $\mu_2^{k_1}$ and $\mu_2^{k_2}$ are the following nunl $\mu_2^{k_2}$ and $\mu_2^{k_2}$ are the following nunl $\mu_2^{k_2}$ are the following nunl $\mu_2^{k_2}$ and $\mu_2^{k_2}$ are the following nunl $\mu_2^{k_2}$ and $\mu_2^{k_2}$ are the following nunl $\mu_2^{k_2}$ are the following nunl $\mu_2^{k_2}$ and $\mu_2^{k_2}$ are the following nunl and $\mu_2^{k_2}$ are the | nerical values: | the veo | ctors | a_1, a_2, a_3 and | | | sk of the investigation is to represent the | points of the second piecev | wise-li | inear | straight line | | | first piecewise-linear vector-function z_1 (\square | l ₁) and unaccounted factors | s influ | ience | e function \square_2 | | | ry values of the parameter \Box_1 changing in the \Box | |] μ₁* □ |]8, ir | the form: | | Applyi | ng the above-stated numerical program to t | | rically | defi | ine the points | | | piecewise-linear straight line $z_2(\square_1)$ depend | ding on the parameter $\Box_1\Box$ | 1,5, th | at ar | e represented | Vol. 12 No. 4 | Imp. Factor: 7.826 | \square of the following table. It should be noted that the numerically constructed vectors z_2 (\square_1) for |
---| | different values of the parameter $1,5\square\square_1\square 8$ completely coincide with numerical results obtained | | earlier in the by developing theory of construction of piecewise-linear economic-mathematical models | | at uncertainty conditions in finite dimensional vector | space stated in [1,2,7,13-15]. Below is a link to the table in the book [15] Table 5.1. Numerical values of the points (vectors) of the second piecewise-linear straight line $\vec{z}_2(\mu_1)$ depending on the parameter $\mu_1 \ge 1.5$ in 3-dimensional vector space, defined by the formula: $\vec{z}_2(\mu_1) = \vec{z}_1(\mu_1)\{1 + A(\mu_1)[1 + \omega_2(\mu_1)]\}$, calculated for the following given values of the vectors $\vec{a}_1 = \vec{t}_1 + \vec{t}_2 + \vec{t}_3$, $\vec{a}_2 = \vec{3t}_1 + 2\vec{t}_2 + 4.5\vec{t}_3$, $\vec{a}_3 = \vec{6t}_1 + 4\vec{t}_2 + 7\vec{t}_3$, and parameters: $\mu_1^{k_1} = 1.5$ $\mu_2^{k_2} = 2$ | N | $\mu_{\scriptscriptstyle 1}$ | $\mu_{\scriptscriptstyle 2}$ | $A(\mu_{\scriptscriptstyle 1})$ | $\omega_{2}(\mu_{1})$ | $\vec{z}_1(\mu_1) = \vec{a}_1 + \mu_1(\vec{a}_2 - \vec{a}_1)$ | $\vec{z}_2(\mu_1) = \vec{z}_1(\mu_1)\{1 + A(\mu_1)[1 + \omega_2(\mu_1)]\}$ | |---|------------------------------|------------------------------|---------------------------------|-----------------------|---|--| | 1 | 1,5 | 0 | 0 | 0 | \vec{z}_1 (1,5) =[4 2,5 6,25] | $\vec{z}_2(1,5) = [4 \ 2,5 \ 6,25]$ | | 2 | 2 | 0,5963 | -0,2104 | -0,5618 | $\vec{z}_1(2) = [5 \ 3 \ 8]$ | $\vec{z}_2(2) = [4,539 \ 2,7234 \ 7,2625]$ | | 3 | 2,5 | 1,1927 | -0,3476 | -0,5618 | $\vec{z}_1(2,5) = [6 \ 3,5 \ 9,75]$ | $\vec{z}_2(2,5) = [5,086 \ 2,9668 \ 8,2647]$ | | 4 | 3 | 1,789 | -0,4442 | -0,5618 | $\vec{z}_1(3) = [7 \ 4 \ 11,5]$ | $\vec{z}_2(3) = [5,6372 \ 3,2213 \ 9,2613]$ | | 5 | 3,1769 | 2 | -0,4719 | -0,5618 | \vec{z}_1 (3,1769) =[7,3538 4,1769 12,1192] | $\vec{z}_2(3,1769) = [5,8331 \ 3,3132 \ 9,613]$ | | 6 | 3,5 | 2,3853 | -0,5159 | -0,5618 | $\vec{z}_1(3,5) = [8 \ 4,5 \ 13,25]$ | $\vec{z}_2(3,5) = [6,1913 \ 3,4826 \ 10,2544]$ | | 7 | 4 | 2,9817 | -0,5712 | -0,5618 | $\vec{z}_1(4) = [9 \ 5 \ 15]$ | $\vec{z}_2(4) = [6,7471 \ 3,7484 \ 11,2452]$ | | 8 | 4,5 | 3,578 | -0,6152 | -0,5618 | $\vec{z}_1(4,5) = [10 \ 5,5 \ 16,75]$ | $\vec{z}_2(4,5) = [7,3041 \ 4,0173 \ 12,2344]$ | ...continued | 9 | 5 | 4,1743 | -0,6509 | -0,5618 | $\vec{z}_1(5) = [11 \ 6 \ 18,5]$ | $\vec{z}_2(5) = [7,862 \ 4,2884 \ 13,2225]$ | |----|-----|--------|---------|---------|---------------------------------------|---| | 10 | 5,5 | 4,7706 | -0,6806 | -0,5618 | $\vec{z}_1(5,5) = [12 \ 6,5 \ 20,25]$ | $\bar{z}_2(5,5) = [8,4206 \ 4,5612 \ 14,2098]$ | | 11 | 6 | 5,3670 | -0,7057 | -0,5618 | $\vec{z}_1(6) = [13 \ 7 \ 22]$ | $\bar{z}_2(6) = [8,9796 \ 4,8352 \ 15,1963]$ | | 12 | 6,5 | 5,9633 | -0,7271 | -0,5618 | $\vec{z}_1(6,5) = [14 \ 7,5 \ 23,75]$ | $\bar{z}_2(6,5) = [9,5391 \ 5,1102 \ 16,1824]$ | | 13 | 7 | 6,5596 | -0,7456 | -0,5618 | $\vec{z}_1(7) = [15 \ 8 \ 25,5]$ | $\bar{z}_2(7) = [10,0989 \ 5,3861 \ 17,1681]$ | | 14 | 7,5 | 7,1560 | -0,7617 | -0,5618 | $\vec{z}_1(7,5) = [16 \ 8,5 \ 27,25]$ | $\bar{z}_2(7,5) = [10,6589 \ 5,6625 \ 18,1534]$ | | 15 | 8 | 7,7523 | -0,7760 | -0,5618 | $\vec{z}_1(8) = [17 \ 9 \ 29]$ | $\bar{z}_2(8) = [11,2191 \ 5,9395 \ 19,1385]$ | # 2.4. Algorithm of multi-variant computer modeling of prediction variables of economic event on the base of **2-component piecewise-linear economic-mathematical models in 3-dimensional vector space** In this section, based around the Matlab program, we suggest an algorithm and numerical programe for multi-variant prediction of economic event at uncertainty conditions on the vase of 2-component piecewise-linear model in 3-dimensionly vector space. According to the theory [1,2,7,13-15]. for the case of a 2-component piecewise-linear vector-function at uncertainty conditions in three-dimensional vector space for a multi-variant prediction of economic event we have the following equations and expressions: | $z\square$ | $\Box 1k1$ \Box | $\exists a \Box 1 \Box$ | $\Box\Box 1k1 (a\Box 2 - a\Box 1)$ | | |------------|-------------------|-------------------------|---|--------------------| | 2 | 1 | 2 | $(a \square \square \square k_1)_2$ | | | $\Box 1k$ | c 🗆 🗆 1 | $k \square \square 2$ | $k (a \square \square \square \square z \square 3 k \square 1)(z_1 a \square 2 \square$ |]a □ 1) | | 3 | 1 | | | | | $Z\square$ | \Box 1 k 2 | $\Box a \Box$ 1 [| $\Box\Box 1k2 (a\Box 2 - a\Box 1)$ | | | | | | $\Box (a-zk)(a\Box\Box -a\Box\Box)$ | $\Box k$) | Vol. 12 No. 4 | Imp. Factor: 7.826 $$\frac{1}{a^{\frac{3}{3}} + \frac{1}{1}} \frac{a^{\frac{2}{3}} + 1}{(a^{\frac{2}{3}} - z^{k_{1}})} - \frac{1}{2}$$ $$z2k2 = z \Box 1k1 \Box (\mu_{1}k_{2} - \mu_{1}k_{1}) - 1 - 2 - (a_{3} - z_{1})$$ $$\cos \alpha_{1,2} = \frac{(\vec{z}_1^{k_1} - \vec{z}_1^{k_1})(\vec{z}_2^{k_2} - \vec{z}_1^{k_1})}{|\vec{z}_1^{k_2} - \vec{z}_1^{k_1}| |\vec{z}_2^{k_2} - \vec{z}_1^{k_1}|}$$ $$A(\mu_1^{k_2}) = A = (\mu_1^{k_1} - \mu_1^{k_2}) \frac{|\vec{a}_2 - \vec{a}_1||\vec{z}_1^{k_1} - \vec{a}_1|}{z_1^{k_2}(\vec{z}_1^{k_1} - \vec{a}_1)}$$ $$\lambda_2(\mu_1^{k_2}) = \lambda_2^{k_2} = \frac{\mu_2^{k_2}}{\mu_1^{k_1} - \mu_1^{k_2}} \cdot \frac{|\vec{z}_1^{k_2} - \vec{z}_1^{k_1}||\vec{a}_3 \vec{z}_1^{k_1}||\vec{a}_3$$ | $(a\ q$ 1 \square | $ \Box\Box\Box $ $ 2\left(\Box a\Box a_{1}\Box\right) $ | $\Box\Box k_1$)
)($\Box a_1 k_3 1\Box$)2 z_1 | Z | voi. 12 No. 4 IIIIp. Factor. 7.020 | |--|---|--|---|--| | 3 | | | | | | $(a\square_3\square_2\square$ | \Box 1k1)(a \Box 4(| $1)\Box z\Box\Box 2k2$) | | | | $q_2 \square (a\square_4$ | $\overline{(1)\square z\square_2 k2}$ | 2 | | | | $q_3 \square z \square 1$ | $z\square 2 (\square 1)\square z \ z\square \square 1 k^1 \ $ | $z\square 2 (\square 1)\square z\square \square$
$\square 2_{k2})$
$\square a\square \square 1)$
$\square a \square 1 \square z \square 1 \square$ | | ı)□ z□2k2 | | $cos \square 2,3 \square$ $a\square 2$ | $ \begin{array}{c c} \hline k & \Box \\ \hline (\Box 1) \Box z \Box \Box \\ z \Box \Box (z \Box k2) $ | $2k2$) \square ($a\square$ 4 (1) \square z \square 2 $k2$ \square 1 $k1$ \square a \square \square 1 | 2 🗆 1) 🗆 2 | | | \square \square $Z_3(\square_1)$ \square Z_1 also the value Give the app $\square 2k2$ \square \square \square | $\{1 \square A_3(\square_1)[1]\}$ les of the paraporoximation po | (1) is the given value | and | (2.3.7) $a\Box_1, a\Box_2, a\Box_3, a\Box\Box_4$ (1) and ordinates of the vector $a\Box_4$. For that we | | $ \Box_{1} \Box m_{1}; \Box ; \cos \Box_{12} \Box c \Box_{2} (\Box k_{22}, \Box $ | $m_1^{k_1} \square m_1 k_1; \square_1 m_1 k_1; \square_1 m_2 k_2; A(\square_1^{k_2}) \square m_2; Z[$ | $A = \begin{pmatrix} a_4 \end{pmatrix}_1 \Box a_4(1); \ a_2 \Box m_1 k_2; \Box_2 \Box m_1 k_2; \Box_2 (\Box_1 k_2) \Box z_2; z_1 d_2 (\Box_1 k_2) \Box z_2; z_2 d_3 d_3 d_3 d_3 d_3 d_3 d_3 d_3 d_3 d_3$ | $) \square_{\square^{k_{2^{2}}}} \square La2;$ $\square_{1}(\square_{1}) \square_{Z1};$ | $:2; z_1k_1 \square z_1k_1; z_1k_2 \square z_1k_2; z_2k_2 \square z_2k_2$ | | $\begin{bmatrix} \square & \square \\ z_2(\square_1) & \square & z_2 \\ q_1 & \square & q_1; q_2 & \square \end{bmatrix}$ | $egin{array}{c} \square \ 2m_1M_{\;;}(a_4)_2 \square \ 2q_2; \ \square_3 \ \square m_3 \end{array}$ | $\{z_1, z_2(\Box_1) \ \Box z 2 m 1;$
$\{a_4(2); (a_4)_3 \ \Box a_4(3); \ \Box_3(\Box_1) \ \Box L a_3 m;$
$\{a_3(\Box_1) \ \Box A m 1 p;$ | • | | | | $ig Z_3(\square_1)\square Z_3$ \square \square $\square_1)/Z_3(\square_1)\square (2$ | $[a,\Box_{23})$ \Box $w3mp;Z_3(\Box_{23m1pM};$
$[a,m1pM]$ $[a,m1pM]$ \Box $[a,m1m]$ $[a,m1m]$ $[a,m1m]$ $[a,m1m]$ $[a,m1m]$ | В 1; | | Copyright: © 2024 Continental Publication 20 Vol. 12 No. 4 | Imp. Factor: 7.826 ``` Z_1(\square_1)/ z_2(\square_1)\square(z_1M)/(z_2m_1M)\square B_3; z_1(1)/Z_3(1) \square (z_1(1))/(z_3m_1p(1)) \square B_{4}; z_2(1)/Z_3(1) \square (z_2m_1(1))/(z_3m_1p(1)) \square B_5; z_1(1)/z_2(1) \square (z_1(1))/(z_2m_1(1)) \square B_6; z_1(2)/Z_3(2) \square (z_1(2))/(z_3m_1p(2)) \square B_7; Z_2(2)/Z_3(2) \square (z2m1(2))/(z3m1p(2)) \square B_8; z_1(2)/z_2(2) \square (z_1(2))/(z_2m_1(2)) \square B_9; z_1(3)/Z_3(3) \square (z_1(3))/(z_3m_1p(3)) \square B_{10}; z_2(3)/Z_3(3) \square (z_2m_1(3))/(z_3m_1p(3)) \square B_{11}; z_1(3)/z_2(3) \square (z_1(3))/(z_2m_1(3)) \square B_{12} (2.3.8) Using the introduced denotation, an algorithm and appropriate numerical program for the system (2.3.8) in the Matlab language will be represented in the form: a1=[a11 \ a12 \ a13] a2=[a21 \ a22 \ a23] a3=[a31 \ a32 \ a33] m1k1=(m1)^* m2k2=(m2)^* a4(1)=a4(1)^* for m1=J1:J2:J3 z1k1=a1+m1k1*(a2-a1); m_1k_2=m_1k_1+m_2k_2*((a_3-z_1k_1)*(a_3-z_1k_1)')/((a_3-z_1k_1)*(a_2-a_1)'); z_1k_2=a_1+m_1k_2*(a_2-a_1); z_2k_2=z_1k_1+(m_1k_2-m_1k_1)*((a_3-z_1k_1)*(a_2-a_1)')/((a_3-z_1k_1)*(a_3-z_1k_1)')*(a_3-z_1k_1); \cos a_{12} = ((z_1k_2 - z_1k_1)^*(z_2k_2 - z_1k_1)')/(sqrt((z_1k_2 -
z_1k_1)^*(z_1k_2 - z_1k_1)')^*sqrt((z_2k_2 - z_1k_1)^*(z_2k_2 - z_1k_1)')); A=(m_1k_1-m_1k_2)*(sqrt((a_2-a_1)*(a_2-a_1)')*sqrt((z_1k_1-a_1)*(z_1k_1-a_1)'))/(z_1k_2*(z_1k_1-a_1)'); p1=m2k2/(m1k1-m1k2); p2 = (sqrt((z_1k_2-z_1k_1)*(z_1k_2-z_1k_1)')*sqrt((a_3-z_1k_1)*(a_3-z_1k_1)'))/(z_1k_2*(z_1k_2-z_1k_1)'); p_3=(z_1k_2*(z_1k_1-a_1)')/(sqrt((a_2-a_1)*(a_2-a_1)')*sqrt((z_1k_1-a_1)*(z_1k_1-a_1)')); La2=p1*p2*p3; w2=La2*cosa12; z2=z1k2*(1+A*(1+w2)) z1=a1+m1*(a2-a1) z1M=sqrt((z1)*(z1)') m2=(m1-m1k1)*(((a3-z1k1)*(a2-a1)')/((a3-z1k1)*(a3-z1k1)')) Am1=(m1k1-m1)*(sqrt((a2-a1)*(a2-a1)')*sqrt((z1k1-a1)*(z1k1-a1)'))/(z1*(z1k1-a1)'); p1m1=m2/(m1k1-a1)') m1); p2m1=(sqrt((z_1-z_1k_1)^*(z_1-z_1k_1)')^*sqrt((a_3-z_1k_1)^*(a_3-z_1k_1)'))/(z_1^*(z_1-z_1k_1)'); p_3m_1=(z_1*(z_1k_1- a1)')/(sqrt((a2-a1)*(a2-a1)')*sqrt((z1k1-a1)*(z1k1-a1)')); La2m1=p1m1*p2m1*p3m1; w2m1=La2m1*cosa12; z_{2m1}=z_{1}*(1+Am_{1}*(1+w_{2m_{1}})) z2m1M=sqrt((z2m1)*(z2m1)') a4(2)=z2k2(2)+[(a2(2)-a1(2))/(a2(1)-a1(1))]*(a4(1)-z2k2(1)); a4(3)=z2k2(3)+[(a2(3)-a1(3))/(a2(1)-a4(3))] a1(1)]*(a4(1)-z2k2(1)); q1=[(a2-a1)*(a3-z1k1)']/[(a3-z1k1)*(a3-z1k1)']; q2=((a3-z1k1)*(a4-z2k2)')/((a4-z2k2)*(a4-z2k2)'); m_3=(m_1-m_1k_2)*q_1*q_2 q3=(sqrt((z2m1-z2k2)*(z2m1-z2k2)')*sqrt((a4-z2k2)*(a4-z2k2)'))/(z1*(z2m1-z2k2)'); a1)']/[sqrt((a2-a1)*(a2-a1)')*sqrt((z1k1-a1)*(z1k1-a1)')]; La_{3}m=[m_{3}/(m_{1}k_{1}-m_{1})]*q_{3}*q_{4}; \cos a23 = ((z2m1-z2k2)*(a4-z2k2)')/[sqrt((z2m1-z2k2)*(z2m1-z2k2)')*sqrt((a4-z2k2)*(a4-z2k2)')]; Am1p=(m1k1-m1)*(sqrt((a2-a1)*(a2-a1)')*sqrt((z1k1-a1)*(z1k1-a1)'))/(z1*(z1k1-a1)'); w_3mp=La_3m*cosa_23; z_3m1p=z1*[1+Am1p*(1+w_2m_1+w_3m_p)] z_3m1pM=sqrt((z_3m_1p)*(z_3m_1p)') B_1=(z_1M)/(z_3m_1pM) B2=(z_2m_1M/(z_3m_1p_M)) B_3 = (z_1M)/(z_2m_1M) ``` | B4=(z1(1))/(z3r
B5=(z2m1(1))/(
B6=(z1(1))/(z2r
B7=(z1(2))/(z3r
B8=(z2m1(2))/(
B9=(z1(2))/(z2r
B10=(z1(3))/(z3r | z3m1
n1(1))
n1p(2
(z3m1
n1(2) | p(1))
(2))
(p(2))
() | | | | | VOI | 12 No. 1 Imp. 1 deto1. 7.020 | |--|--|---|---|--|--|-------------------|---------------------|---| | B11= $(z2m1(3))/end$. | | 1p(3)) I
□□□□ | | m1(3)) | | | (2 | 3.9) | | Giving the statistation above suggested economic event dimensional vectors and parameters | stical
l num
at u
ctor s
n exa
 | data of
nerical p
ncertain
pace. □
mple co
and □ | the vectors a_1 , a_2 , or | conduct wante to the base of t | ider inve | stigatio
mpone | ons on r
nt piec | \Box_1 and \Box_2 by means of the nultivariant prediction of ewise-linear model in 3-al vectors $a_1, a_2, a_3, a_4(1)$ | | numerical value
Table 5.2 (Be
Numerical valu | =1,5:
ollowings of e
low interpretation | 0,5:8
ng nun
conomi
i s a lin
modulu | nerical calculat
ic event on the s
k to the table
is and appropri | ion on est
subsequent
in the bo c
iate coordin | abment
stage re
ok [15])
nates of | present | ted in t | le variants of prediction
ables 5.2 and 5.3.
bints-vectors for different | | values of param | eters | | rical values of t | | 2,7094
 | | | 7 | | | N | | | | | \square_2 | \square_3 | | | | 1 | $ \begin{array}{c c} 12,176 \\ \square Z_2 \\ 9,6130 \\ \square Z_1 \\ 9,6190 \\ \square \square Z_2 \\ \square \square Z_2 \end{array} $ | $(\Box_1) = [5,8331]$
$(\Box_1) = [5,8331]$
$(\Box_1) = [5,8331]$ | 4,1769
3,3132
3,3132 | 3,1769 | 2 | O | | | | | | $(\Box_1)=[8 \ 4.5 \ 13]$ | 3,25] | | | | | | □
Table 5.3 (Be
Numerical valued
different values | es of t | s a lin | k to the table
os of module an | in the boo d appropri | ate coord | | | Lictable points-vectors for | | | | | 1,0984 | 0,7851 | 1 | ,3991 | | | | - | | | | | | | | | Vol. 12 No. 4 | Imp. Factor: 7.826 | | | 7 01 | |---|---|--| | $ \begin{array}{ccc} \square & \square \\ z_1(1)/Z_3(1) & \dots & \dots \\ \end{array} $ | $ \Box \qquad \Box \\ z_2(1)/Z_3(1) \\$ | $ \begin{array}{ccc} \square & \square \\ z_1(1)/z_2(1) \\ \end{array} $ | | 1,0984 | 0,7851 | - 1,3991 | | \square | \square \square $Z_2(2)/Z_3(2)$ | $ \begin{array}{ccc} \square & \square \\ z_1(2)/z_2(2) \\ \end{array} $ | | 1,0984 | 0,7851 | - 1,3991 | | $ \Box \qquad \Box \\ z_1(3)/Z_3(3) $ | \square \square $Z_2(3)/Z_3(3)$ | | | 1,0984 |
0,7851 | - 1,3991 | | ol. 12 No. 4 | Imp. Factor: 7.826 | |---------------|--------------------------| | 01. 12 110. 1 | IIII D. I actor: 7.020 | value of an arbitrary parameter \Box_1 , changing in the interval $\Box_1^{k_2} \Box_1 \Box_1^{k_2}$ we have appropriate numerical values $\vec{z}_1(\Box_1)$, $\vec{z}_2(\Box_1)$, $\vec{Z}_3(\Box_1)$, $|\vec{z}_1(\Box_1)|$, $|\vec{z}_2(\Box_1)|$, $|\vec{z}_3(\Box_1)|$. **Fig. 1.** The graph of numerical values and appropriate coordinates of predictable points-vectors for the values of the parameters 3,1769 \square \square 1 \square 8 and 0 \square \square 2,7094 calculated by different criteria. | For visuality as an example we take the value of the parameter $\square_1 \square 5$. | |--| | | | Take into attention the denotation of appropriate ratios of coordinates of vectors $z_1(\square_1)$ $z_2(\square_1)$ $Z_3(\square_1)$ | | in the form: | | | | $z \square^{1}(i) \square x^{1i}, z \square^{2}(i) \square x^{2i}, \square z^{1}(i) \square x^{1i} \qquad (2.3.10) Z_{3}(i) X_{3}i Z_{3}(i) X_{3}i Z_{2}(i) x_{2}$ | | In these denotations, compose their percentage ratio (for i=1, 2, 3): | | | | $n_{1i} \square z \square \square 1(i) 100\% \square x 1i 100\%,$ | | | | | | $Z_3(i)$ X_3i | | | Vol. 12 No. 4 | Imp. Factor: 7.826 | $n2i \square z \square \square 2$ (i)100% $\square x 2i$ 100%, | | , . | |
---|-----------------------------|--|----------| | $ \overline{Z3(i)} X3i $ $ \square \qquad \square $ $ n_{2i} \square \qquad $ | (i) voi | $Z_3(\Box_1)$ | | | $n_{3i} \square \square z^{1}(i)$ 100% $\square x^{1i}$ 100%, $n_{1} \square z \square^{1}(\square^{1})$ 100%, z 20 | (ι) λ2ι | 2 3(山1) | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | .11) $Z_3(\Box_1)$ | $Z_2(\square_1)$ | | | According to formula (2.3.11), tables 5.2 and 5.3, we necoordinates of | umerically e | establish the percentage ratio of t | :he | | the vectors $z_1(\square_1)$ and $z_2(\square_1)$, i.e. x_{1i} and x_{2i} from the ap | | oordinates of the predicting functi | on | | $Z_3(\square_1)$ with regard to uncertainty factors influence, in | the form: | | | | $n_{11} \square n_{12} \square n_{13} \square 109,84\%$ | | (2.3.12) | | | $n_{21} \square n_{22} \square n_{23} \square 78,51\%$ | | (2.3.13) | | | $n_{31} \square n_{32} \square n_{33} \square 139,91\%$
0,7851, $n_6 \square 1,3991$
III. Results | (2.3.15) | (2.3.14) $n_4 \square 1,0984, n_5$ | | | Numerical value (2.3.12) shows that the values of the clinear criterion is higher by 9,84% than the appropriate the vector function with regard to uncertainty factors in | e prediction | | | | numerical value (2.3.13) shows that the values of means of the second piecewise-linear vector function prediction coordinates calculated according to the vector functions. | of coordinat
on is lower | r by 21,49% than the appropria | ate | | influence; - numerical value (2.3.14) shows that the values of the second piecewise linear vector function: | | | | | of the second piecewise-linear vector-function; numerical value (2.3.15) show the percentage remodules of the | | | by | | vectors $z_1(\Box_1)$, z_2 (\Box_1), $Z_3(\Box_1)$, calcular It should be noted that by means of numerical | ted accordin | ng to different criteria.
ole 5.3 it is easy to establish t | he | | dependence of \Box \Box coordinates of prediction vector-function de $(i) \sim \Box_1$ and \Box | epending on | in the parameter \square_1 , i.e. $z_1(i) \sim \square_1$ | $,Z_{2}$ | | $Z_3(i) \sim \square_1$. References: | | | | Vol. 12 No. 4 | Imp. Factor: 7.826 - Aliyev Azad, G. (2002). Экономико-математические методы и модели с учетом неполной информации. National Academy of Sciences of Azerbaijan, Publishing house-Elm, ISBN 5-8066-1487-5, Baku, 288 pages. - Aliyev Azad G., Ecer, F (2004). Tam olmayan bilqiler durumunda iktisadi matematik metodlar ve modeler. Publishing house-NUI of Turkey, ISBN 975-8062-1802, Nigde, 223 pages. - Aliyev Azad, G. (2007). On construction of conjugate vector in Euclidean space for economic-mathematical modeling. Publishing house-Izvestia NASA Ser. of Humanitarian and social sciences (economics), Baku, pp.242–246. - Aliyev Azad G. (2008). Numerical calculation of two-component piecewise-linear economic-mathematical model in three-dimensional vector space. Publishing house-Izvestia NAS of Azerbaijan, №1, Baku, pp. 96-102. - Aliyev Azad G. (2008). Numerical calculation of three-component piecewise-linear economic-mathematical model with regard to uncertainty factor in 3-dimensional vector space. Izvestiya NAS of Azerbaijan, ser. of human. & social sciences (economics), Nº3, Baku, pp. 86-100. - Aliyev Azad G. (2008). Piecewise-mathematical models with regard to uncertainty factor in finite-dimensional vector space. "Economics, Statistics and Informatics" Publishing house Vestnik of U.M.O-№ 3, Moscow, pp.34−38. - Aliyev Azad G. (2009). Economic-mathematical methods and models in uncertainty conditions in finite-dimensional vector space. Publishing house NAS of Azerbaijan "Information technologies." ISBN 978-9952-434-10-1, Baku, 220 pages. - Aliyev Azad G. (2009). Development of software for computer modeling of economic event prediction by means of piecewise-linear economic-mathematical models with regard to unaccounted factor influence on a plate. «Economic, Statistic and Informatic», Vestnik of UMO, №4, Moscow, pp.139-144. - Aliyev Azad G. (2010). Software development for computer modeling of two-component piecewise-linear
economicmathematical model with regard to uncertainty factors influence in m-dimensional vector space. «Natural and technical sciences» №2(46), «Sputnik» publishing., ISSN 1684-2626, Moscow, pp. 510-521. - Aliyev Azad G. (2010). Software development for computer modeling of two-component piecewise economic mathematical model with regard to uncertainty factors influence in 3-dimensional vector space. Publishing «Economics sciences», Nº3, Moscow, pp. 249-256. - Aliyev Azad G. (2010). Software development for multivariant prediction of economic event in uncertainty conditions on the base of two-component piecewise-linear economic-mathematical model in m-dimensional vector space. Publishing «Economics sciences», Nº-5 (66), Moscow, pp. 236-245. - Aliyev Azad G. (2010). Software development for multivariant prediction of economic event in uncertainty conditions on the base of two-dimensional piecewise-linear economic-mathematical model in three-dimensional vector space. Publishing «Economic, Statistic and Informatic» Vestnik of UMO, Moscow, Nº-3, pp. 127-136. Vol. 12 No. 4 | Imp. Factor: 7.826 - Aliyev Azad, G. (2011). Theoretical bases of economic-mathematical simulation at uncer-tainty conditions, National Academy of Sciences of Azerbaijan, Akademic Publishing -"Information Technologies," ISBN 995221056-9, Baku, 338 pages. - Aliyev Azad G. (2013). Economical and mathematical models subject to complete information. Ed. Lap Lambert Akademic Publishing. ISBN-978-3-659-30998-4, Berlin, 316 pages. - Aliyev Azad G. (2014). Economic-Mathematical Methods and Models under Uncertainty. "Taylor and Francis Group", Apple Academic Press, Hard, ISBN-13: 9781926895567, USA, 267 pages. - Aliyev Azad G. (2017). Piecewise Linear Economic-Mathematical Models With Regard to Unaccounted Factors Influence in 3-Dimensional Vector Space. American Review of Mathematics and Statistics Published by American Research Institute for Policy Development, Vol. 5, No. 1, ISSN: 2374-2348 (Print), 2374-2356 (Online), (United States), pp. 7-28. - Aliyev Azad G. (2017). Three-component piecewise-linear economic-mathematical mode and method of multivariate prediction of economic process with regard to unaccounted factors influence in 3-dimensional vector space. American Review of Mathematics and Statistics Published by American Research Institute for Policy Development, Vol. 6, No. 1, ISSN: 2374-2348 (Print), 2374-2356 (Online), (United States), pp. 37-62.